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1 Topology Cheatsheet

1.1 Berry Curvature Properties

• Zero for single band problems

• Formula

Ω⃗(n)(k⃗) = i
∑
m ̸=n

⟨n, k⃗|∇k⃗H|m, k⃗⟩ ×
〈
m, k⃗

∣∣∣∇k⃗H
∣∣∣n, k⃗〉

(ϵm,⃗k − ϵn,⃗k)
2

(1)

We can see that for a single band, berry curvature is zero. Also, see that it makes B.C. is a
property of the system and not of any single band.

• B.C is largest where bands are closest i.e. near avoided crossings.

•
∑

m Ω(m)(k⃗) = 0 for a given k⃗.

• Symmetries and Ω⃗(k⃗)

– Under parity: Ω⃗σ(k⃗) = Ω⃗σ(−k⃗)

– Under TRS: Ω⃗σ(k⃗) = −Ω⃗−σ(−k⃗)

– TRS+Parity: Ω⃗σ(k⃗) = −Ω⃗−σ(k⃗)

– TRS+Parity+ No SOC:
∣∣∣n, k⃗, σ〉 =

∣∣∣n, k⃗,−σ
〉
= Spin independent

Ω⃗(k⃗) = Ω⃗(−k⃗) = −Ω⃗(−k⃗) = 0, so no berry phase (probably the reason why conventional
solid state textbooks get away by removing this physics altogether)

– TRS+Parity+Strong SOC (e.g. heavy metals):
∣∣∣n, k⃗, σ〉 ̸=

∣∣∣n, k⃗,−σ
〉
=, so Ω ̸= 0.

However, Ω⃗σ(k⃗) = −Ω⃗−σ(k⃗), so opposite spins have Opposite anomalous velocities.
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• Physical realisations of 3 cases

– Broken Inversion: MoS2 breaks inversion symmetry in a graphene type lattice, possess
opposite BC for two valleys.
As a result, when an electric field is applied, electrons in different valley deflect differently,
giving a transverse hall type voltage (even in absence of B⃗). This is called Valley Hall
effect.
Here, Ω⃗(k⃗) = -Ω⃗(−k⃗) (spinless model), and h(−K) = h(K ′), hence berry curvature are of
opposite signs.

– Broken Time reversal: bands in magnetic metals like Fe, Co, Ni, and their alloys can have
non-zero Berry curvatures.
Leads to Anomalous Hall Effect: a voltage V⊥ ⊥ to µ⃗, E⃗ that can be much larger than
the ordinary Vhall produced by an B⃗applied.
Why is there a spin current in anomalous hall effect?: Because time reversal symmetry
is broken (or eqv you’ve unequal numbers of spin ↑, ↓ giving you the magnet), there is a
non-zero spin current.

– Strong SOC+Parity+TRS: Heavy metals like Pt and Ta.
Apply E⃗ ̸= 0 =⇒ Opposite spins get deflected to opposite sides (Ω⃗σ(k⃗) = −Ω⃗−σ(k⃗)). Due
to TRS, n↑ = n↓ =⇒ No net Hall voltage. However, jspin ̸= 0 =⇒ Spin-Hall Effect

1.2 Why an Insulator?

Because when we define berry phase, we impose adiabatic theorem and demand that a given state |n⟩
doesn’t cross another state |m⟩. If it did, we get a level crossing, after which when the states separate,
it’s not possible to conclude which superposition of the states the system now lives in.
Moreover, to get Topological invariants, we often integrate over filled bands, hence partially filled
bands must be empty.

1.3 Topological Invariants: Broad

• Why does an Insulator even have a finite ”conductivity”?
Insulator - Filled bands - Hence it can’t generate voltage/transport current parallel to electric
field.
However, there can still be a nonzero Hall conductivity associated with charge currents and
electric fields that are perpendicular (e.g., the band can support a flowing charge current that
generates a transverse voltage, but no longitudinal voltage)

• A non-zero Chern number equals to some non-zero hall conductivity - Why?
Because hall conductivity is obtained by integrating the transverse anomalous velocity Ω⃗(k⃗) over
all of the states in the filled bands.
Non-zero C =⇒ Quantized Hall conductance
Can understand: Q.Hall (TRS breaking =⇒ C ̸= 0), QAHE (B⃗ = 0 but TRS is still broken).
How to Physically understand the ”transverse” velocity in Q.Hall effect?”

• Topological represent forms of matter different from their non-topological counterparts. For e.g.,
at the edge of materials with different topological invariants, the bandgap must go to 0 to allow
for an edge state.

1.4 SSH Model

HSSH = (t+ δt+ (t− δt)cosk)σx + (t− δt)sink σy (2)

3 perspectives

• Winding Number - Berry Phase perspective
Why Topological? In the dx, dy plane, you can make variety of curves that won’t (consistently)
have origin in them and all of them are guranteed to have the same winding number (hence same
topological properties).
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• Mapping onto a 1d Dirac equation

H = (t− δt)(sink)σx + (t+ δt+ (t− δt)cosk)σz (3)

Heff = (t− δt)(−k)σx + (2δt+ (t− δt)
k2

2
)σz (4)

Expand around k → k + π. Given the SSH H, we can do a unitary transformation (workout
exactly how) sending Hssh it to 1d dirac hamiltonian. This gurantees edge modes for sgn(δt(δt−
t)) > 0 =⇒ δt < 0 (corresp to mB > 0).
Edge mode localization : δt ↓, ξ ↑

• Level crossing, Topological Phase transition and berry curvature transfer:
As bandgap decreases, the integrated berry phase (over some small batch of the 1d BZ) is ∓π/2
near k = 0 for the GS/ES, while it increasingly becomes ±π/2 at k = ±π/a (this is for trivial
case i.e. δt > 0).
Bands touch =⇒ Berry phase gets transferred =⇒
GS has −π/2 (band minima) + −π/2 (band extrema, now reversed) =⇒ net BP = π.
Lesson: Band touchings/level crossings transfer berry phase, turning trivial into topological.

1.5 Level Crossings in a general Topological System

• 2D Graphene type lattice:

Heff =

[
m U(kx ∓ iky)

U(kx ± iky) −m

]
= d⃗(k⃗) · σ⃗ (5)

(± - @K,K’).
Similarity to SSH = near the minima, one component if k independent (i.e.m), others are
linearly dependent. BP = ±πsgn(m) =⇒ as you tune m from -ve to +ve (by chaning the order
hierarchy of ϵA, ϵb, onsite energies), we flip the BP of both GS (at K, K’) by 2π. However, since
they’re still equal and opposite, the net integrated BC is 0.
Break TRS =⇒ one Valley flips m while another doesn’t
=⇒ C = 1

2π

∫
Ω(k⃗)d2k⃗ goes from 0 to ±2π (How exactly??) =⇒ we get QAHE

• A similar reasoning works in 3d TI too, but with some caveats. See @Dan ralph here.

1.6 Quantum Hall effect

Classical Expectations

• Why measure ρxy?: independent of scattering time (τ), hence showcases property inherent to
the 2d system
Also, Rxy = ρxy (surprisingly), so what you measure is exactly what you want.

• Drude predictions: ρxx =
m

ne2τ
, ρxy =

B

ne

• IQHE:

– Plateaued Values: ρxy =
2πh̄

e2
1

ν
, over a range of magentic fields.

– Centre of each Plateau: B =
2πnh̄

e

1

ν
=

nΦ0

ν
– ρxx = 0 for every Plateau, spiking to a large value in between two of them.

• What is IQHE: Perfect conductor or Perfect insulators?

– Here ρxx = 0, which leads to σxx = 0 too (provided ρxy ̸= 0)

– But usually, ρxx = 0 =⇒ perfect conductor, σxx = 0 =⇒ perfect insulator

– Solution: This is a artifact of τ → ∞ limit of Drude Model. Here, J⃗ ⊥ E⃗, so E⃗ · J⃗ = 0 E⃗ · J⃗
= work done in accelerating charges
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– ρxx = 0: No energy gets dissipated, σxx = 0: No current in longitudinal direction.

– In the τ → ∞ limit, we don’t get a longitudinal current in equilibrium (dv⃗dt = 0), only
transverse for Ex.

1.7 Jackiw-Rebbi Solution

1.8 Anti Unitary Symmetries

Hand written notes
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