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1 Spontaneous Symmetry Breaking

1.1 Definition

When the state |Ψ⟩ isn’t invariant under the symmetry operator Û s.t.
[
Ĥ, U

]
= 0 (i.e. Û is a sym-

metry of the system), then the *state* is said to have spontaneously broken the symmetry.

Clarification: Corresponding to every physical symmetry operation (say G, e.g. translation, rota-
tion etc.) of the system, ∃ Û to implement it in H (the corresponding Hilbert space).
|Ψ⟩ violates G, not Û (what I mean here is that observables that are extracted from |Ψ⟩ don’t have
the same symmetry as G).

Why is this baffling?
Classically, we reason that since the equations governing the system are symmetric under G, so should
the actual state be (here I refer to classical state in a dynamical sense i.e look at macrostates). Hence
Spontaneous symmetry breaking (a.k.a SSB) can be thought about understanding how symmetry in
microscopic descriptions are broken on a macroscopic/grand scale.
Q. Mechanically, one can motivate the idea through the following quandary:-

Proof that crystals can’t exist at all temperatures:
Take the following crytal hamiltonian

Ĥ =
∑
i

p2i
2m

+
∑
i<j

V (r⃗i − r⃗j)
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Now, arbitrary global translations are a symmetry of H, characterised by the operator Û = T̂η⃗,

for η⃗ being the translation. Also
[
Ĥ, T̂η⃗

]
= 0. Now, in a crystal the density is modulated i.e.

ρobs(x) = ρobs(x+ a) for a being a crystal translation vector.
However look at the following

< ˆρ(x+ η) > =
1

Z
Tr(e−βĤ T̂η⃗ ρ̂(x) T̂

−1
η⃗ )

=⇒ < ˆρ(x+ η) > = < ˆρ(x) >

Hence density cannot stay modulated and a crystal cannot be observed, contrary to empirical obser-
vation. So what gives?
Clearly one of our assumptions while using statistical averages is wrong and as it turns out, it’s the
assumption of ergodicity. We’ll see how it comes, but the gist is that on experimental timescales,
system cannot explore all parts of the phase space with some statistical weight.

Caution: SSB isn’t a purely quantum phenomenon.

In the spirit of QFT, one can say that SSB describes systems in which L has a symmetry, but the
lowest order vacuum solutions don’t possess the said symmetry (although we’ll explore the statistical
side of SSB, leaving such cases aside).

Observation 1: For every such |Ψ⟩, there exists a multitude of states |Φ⟩ s.t. they’re degenerate.
One can generate the set |Φ⟩ by the rule |Φ⟩ = Û |Ψ⟩.
Check that E|Ψ⟩ = E|Φ⟩ −−(1).

Order Parameter Operator: For the set of *broken* symmetry states, one can define an order pa-
rameter operator Ô. The action of this operator is defined as:

• Each of the symmetry related states |Φ⟩ are the eigenstates of this operator with distinct non-zero
eigenvalues.

• The expectation value Ô in a symmetric state is 0.

In general
[
Ô, Ĥ

]
̸= 0 (however ∃ exceptional *cases* where it happens to be true).

Observation 2: For the general case, we can see that |Ψ⟩ will not be an Energy eigenstate. More-
over, it cannot be a thermal mixture of energy eigenstates.

Proof: Taking
[
Ô, Ĥ

]
̸= 0, it can’t be an eigenket since that would imply Ĥ and Ô commute. For the

thermal mixture case (?) - e.g. Crystal fallacy above.

Conclusion: Clearly the symmetry broken state |Ψ⟩ isn’t in a thermal equilibrium! Then shouldn’t
these states be unstable? No. We do get to observe them in day-day life and these clearly unequiv-
ocally exist with large lifetimes(and hence are stable in the colloquial sense). How does this happen
then?
Answer - Due to the large singularity of thermodynamic limit.

At Thermodynamic limit (N → ∞, V → ∞ with
N

V
= constant) :

• <
[
Ĥ, Ô

]
> = 0

• SSB states become orthogonal to each other i.e. ⟨Φ|Ψ⟩ = 0

• SSB states become degenerate with Symmetric energy eigenstates, thus becoming eigenstates
themselves. Hence they can occur in thermal equilibrium.

These states can therefore exist in the thermodynamic limit.
Thermodynamic limit, being qualitatively different as above from large finite N,V makes the limit itself
a singular one(defined below). Ergo - Thermodynamic limit is an idealisation, only to serve as a guide
and not a real description.
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1.2 What happens for finite N?

Observation 3: Symmetric Hamiltonians (by symmetry here a global symmetry is implied) exhibit the
following properties:

• The decompostion of Ĥ = Ĥ0 +
∑

K⃗ ĤK⃗ is possible, where the 1st part realizes k⃗ = 0 part of
the F.T. i.e. Centre of Mass part and the 2nd part describes internal degrees of freedom(basically

a fourier decomposition into different non-zero and zero k⃗ parts).

•
[
Ĥ0,

∑
K⃗ ĤK⃗

]
= 0

Claim: The global symmetry breaking can be explained only by using Ĥ0 part of Ĥ.

Example: For a solid, the exact hamiltonian looks like

Ĥ =
∑
i

p2i
2m

+
∑
i<j

V (r⃗i − r⃗j)

Although the system has translational symmetry, when we observe daily life objects like a rock, they
don’t exhibit the symmetry of the hamiltonian i.e. they aren’t delocalised over all space. Now for this,
the collective part of the hamiltonian describes the C.O.M motion or the motion of N atoms on mass
m moving in unison.
In free space, this motion corresponds to a free particle with M = mN and the lowest energy level
spacing scales as 1

N .

Tower of States: These low lying energy levels of the solid makeup what’s called the tower of

states. Important to note that the states( which are eigenstates of
ˆ⃗
Ptotal and hence behave like a

delocalised wave over the whole space) are collective excitations of the whole system and as such are

non-local (e.g. having the COM momentum as k⃗ doesn’t fix the local momentum of a given particle,
just their sum).

Non local in what sense? - Can’t be written as
⊗

|Ψ⟩j , for |Ψ⟩j being single particle states(in a
general basis that is). Because they’re non-local, as the system size increases, they become increas-
ingly unstable towards local interactions/perturbations/disturbances, hence not observed in daily life
(Why?).

Question: Why is the GS of the true system only the eigenstate of the collective part?
(It seems plausible on energy grounds, since the collective part shall offer lowest energy, but
the argument is motivated by a classical picture - basically net energy of the system = ECOM

+ Esystem wrt COM , hence lowest energy contributions come from COM)

Now what happens to stable states in this analysis?

• Clearly they aren’t one of these low lying symmetric( i.e. wrt global symmetry of the system,
for e.g. in case of a solid, states exhibiting translational invariance) eigenstates of the collective
hamiltonian.
This is from daily observation that these states are the normal SSB states.

• Not eigenstates, then these are superpositions of the low lying eigenstates (Why?).

• Now since low lying energy gap scales as
1

N
, for large N, they squeeze up and hence the energy

uncertainty reduces for the stable SSB state.

• This makes them almost degenerate(i.e. < E >≈ En) in the large N limit and has energy close
to exact GS of the hamiltonian. (Why?).
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• Overlap between SSB states now scales as e−N and hence tunneling probability to another SSB
state is suppressed.
(Note: There’s a difference between this statement and the thermodynamic counterpart. In the
first, which generally happens fpr QFTs/quantum mech, we refer to the fact that the tunneling
probabilty goes as e−c·V , which for large systems is 0. Say for example the double potential well.
This precludes any possibility of tunneling, which could’ve restored the symmetry by making the
symmetric sum state as GS. (see Maggiore Chapter 11, 1st section)
For the thermodynamic case, this argument changes to thermal fluctuations causing transitions
between states. ergodicity breaks, hence it gets stuck in one SSB.

• Why are they stable? Simply because they are local(unlike the symmetric states), can be written
as

⊗
|Ψ⟩j (i.e. are product states) and are stable against local perturbations.

Now for finite N, a symmetric H clearly cannot induce an SSB GS. One is forced to consider a symme-
try breaking perturbation that singles out a particular SSB state out of the many degenerate,stable
SSB states.

Why the Spontaneous(the 1st S) in SSB? - Large system are exceedingly sensitive to even a small
perturbation. Latter suffices to single out a particular SSB state. Hence the termed ”Spontaneus”.

Ĥ0 + Ĥsb perturb = SSB GS of the full system ! In thermodynamic limit, the SSB GS becomes
an eigenstate of the order parameter operator

But without Ĥsb perturb, the GS is symmetric for any system size. This clarifies that the thermo-

dynamic limit is singular - adding or subtracting Ĥsb perturb changes the fate of GS itself (symmetric
or not), even qualitatively.

The Ergodicity Breakdown

• ⟨Φssb|Ψssb⟩ ≈ exp(−N) - exponentially suppressed.

• Hence for all practical purposes, one can treat as if the system has only 1 SSB GS.

• All other SSB states are inaccessible with the entire dynamics taking place in the particular SSB
state and it’s excitations.

• Ergodicity breaks - System only lives (or ”explores”) a restricted Hilbert space. The rest of phase
space isn’t accessible on experimental timescales.

• However, if one wants to study physics of phase transitions, then clearly the system visits a
different SSB GS.

• Moral - Global Thermal equilibrium isn’t reached. Ex: Disordered Glasses. 1

1.3 Singular Limits

Mathematically, the fact that limits do not commute implies the development of a non-analytic feature
in some function.
Example consider: y = tanh(zx) The the

1.4 Why different SSB GS’s being degenetrate isn’t conceptually trivial?

The idea that different symmetry broken states could be degenerate seems to present a *conundrum*.
For |Ψ⟩, (1) states that SSB states are degenerate (one checks that in (1), |ϕ⟩ is a different SSB state
since it should in general have different eigenvalue via Ô).
To explore the same statement in classical physics, one takes following model of a classical magnet

H =
∑
x⃗,δ⃗

−|J |S⃗x⃗ · S⃗x⃗+δ⃗ (1)

accounting for nearest neighbour interaction.

1Suggested Paper: R. G. Palmer, Broken ergodicity, Adv. Phys. 31, 669 (1982). doi:10.1080/00018738200101438.
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1. For minm. E, align every magnet in same direction.∃ a global SO(3) symmetry of spin rotations
in R3, leaving the configurations degenerate.

2. < M > =
e(−βEstate) ·Mstate

Z
= 0 (think why). So no net magnetisation( at any T).

3. Above is in a contradiction to the fact that we can see a *net* magnetism at room temp for
various substances.

Resolution: Introduce a small symmetry breaking term in H.

H =
∑
x⃗,δ⃗

−|J |S⃗x⃗ · S⃗x⃗+δ⃗ − hn̂ · S⃗x⃗ (2)

i.e. essentially add a small magnetic field(set h=0 at the end).
Now

1. < M > = Nsn̂ at T = 0 (i.e. ground states of the approximate hamiltonian), for s =Mper spin.(
think why)

2. A set of non-commuting limits emerge

lim
h→0

lim
N→∞

< M >

N
= s

lim
N→∞

lim
h→0

< M >

N
= 0

3. What do the limits mean for magnets in our everyday world?
Suppose we start with a finite sample of spins and then take the thermodynamic limit of
limN → ∞. Now this limit can be taken at the behest of an **arbitrarily** small magnetic
field. First we set B = 0. Clearly none in the compact sample of spins get magnetised and now
if we take thermodynamic limit, we find that the average spin was and still is 0.

4. Now suppose we ramp up a small B and let the compact sample acquire a small moment. Take
limN → ∞. Switch B = 0. What we find now is that the sample still has a **net** moment.
This holds for arbitrarily weak B. The spontaneity of the evolution comes from a qualitative
change of outcome even in the presence of a minuscule magnetic history.

So we see that the system settles to the ground state (of the approx hamiltonian). However, even
after breaking the symmetry, these magnets don’t thermalize in the sense of (2) - The reason for
this is that states with different magnetisation, while formally connected via thermal fluctuations, are
actually not accessible on ordinary time scales. All magnets being simultaneously rotated over the
same angle in a single thermal fluctuation is exceedingly unlikely to occur for large magnets.

1.5 Harmonic Crystal: Example of SSB in quantum realm

For an explicit example, take the harmonic crystal:-

Ĥ =
∑
x⃗

P̂ 2(x⃗)

2m
+

∑
x⃗,δ⃗

1

2m
(X̂(x⃗)− X̂(x⃗+ δ⃗) )2

where δ = (a, a, a) for a being the crystal spacing. We calculate here the collective H.

Guess: H0 = HCOM . The COM is a particle of mass mN and momenta P̂COM =
∑

i P̂i.

Observation: [H,Pcom] = 0.

Legal consequences:

• All eigenstates of the crystal are total-momentum eigenstates.

• ∆Pcom = 0, then ∆Xcom =?

• So is the GS (i.e. your chair/crystal etc.) is an eigenstate?

• Is it a thermal state? ;)
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1.6 Calculation of the collective Hamiltonian

Ĥcrystal = Ĥ0 +
∑
K⃗

ĤK⃗

Q. What does ĤK⃗ physically indicates?
Define formally the fourier transform of the operators as

X̂(r⃗) =
∑
k⃗

X̂(k⃗)e−ik⃗·r⃗ (3)

X̂(k⃗) =

∫
V
e+ik⃗·r⃗ X̂(r⃗) (4)

X̂†(k⃗) = X̂(−k⃗) (5)

In the same vein, we define

P̂ (r⃗) =
∑
k⃗

P̂ (k⃗)eik⃗·r⃗ (6)

P̂ (k⃗) =

∫
V
e−ik⃗·r⃗ P̂ (r⃗) (7)

P̂ †(k⃗) = P̂ (−k⃗) (8)

The above definition ensures that the commutation relations in the new set are[
X̂(q⃗), P̂ (k⃗)

]
= ih δ3(q⃗ − k⃗) (9)

Now,

P̂com =
∑
x⃗

P̂ (x⃗) (10)

=⇒ P̂com =
∑
x⃗

∑
k⃗

P̂ (k⃗)eik⃗·x⃗ (11)

=⇒ P̂com =
∑
k⃗

P̂ (k⃗)δ3(k⃗) V (12)

=⇒ P̂com = P̂ (0)V (13)

where we used
∑

r⃗ e
ik⃗·r⃗ = δ3(k) V, with V being the finite volume of the sample.

Also, ∑
x⃗

P̂ 2(x) =
∑
x⃗

∑
k⃗,q⃗

P̂ (k⃗)P̂ (q⃗) ei(k⃗+q⃗)·x⃗ (14)

=
∑
k⃗,q⃗

P̂ (k⃗)P̂ (q⃗)δ3(k + q) V (15)

=
∑
k⃗

P̂ (k⃗)P̂ (−⃗k) V (16)

Taking the zero k⃗ part, we have ∑
x⃗

P̂ 2(x) = P̂ (⃗0)P̂ (⃗0) V (17)

=
1

V
P̂ 2
com (18)

Now we can clearly see that( for the k⃗ = 0 part)∑
x⃗

1

2m
P̂ 2(x) =

1

2mV
P̂ 2
com =

P̂ 2
com

2mN
(19)
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Since V ∼ N . Now we perform the same steps on the harmonic part:-∑
x⃗,δ⃗

(X̂(x⃗)− X̂(x⃗+ δ⃗) )2 = 4
∑
k⃗,δ⃗

X̂(k⃗)X̂(−⃗k) sin2(1
2
k⃗ · δ⃗) (20)

which yields no part when we take k⃗ = 0 part.
Hence, to calculate the collective hamiltonian, we take k⃗ = 0 parts from (17) and (21) to get

Hcollective =
P̂ 2
com

2mN
(21)

To explore SSB, we only take H0 part of Ĥcrystal.

Why is it valid?

•
[
Pcom, Ĥ

]
= 0, hence good quantum numbers of one part are good quantum no.’s of other.

• At extremely low temperatures, only the collective part of the Hamiltonian matters.
This is because even the smallest phonon energy is much-much higher than the spectra of the
collective hamiltonian.

1.7 Ĥ0 Spectrum

Figure 1: Collective Spectrum

Hcollective =
P̂ 2
com

2mN
(22)

1. G.S: E=0, ψ = 1 everywhere - delocalised with equal phase.

2. ∆E ∼ 1
N , the separation from GS and excitations with non-zero Pcom.

3. As N → ∞, tower collapses. Excited states become degenerate with GS.
No energy needed to excite a collective mode!
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4. To make a crystal, simply make a wavepacket from these states with well defined Xcom. What’s
< Ewavepacket >?
Clearly, as N → ∞, it’s 0. Hence we can see a crystal in thermodynamic limit.

Of course real crystals are not infinitely large, and superpositions of momentum states do cost
energy to create.

”How much energy is required for finite N to localise the system?”
To account for the localisation energy, we add a confining potential that prevents delocalisation - In
the end we’ll set it to 0.
Hence, we go with

Hpert =
P̂ 2
com

2mN
+ µX2

com (23)

where µ is the strength of a potential that tends to localise the crystal at the origin of our coordinate
system.

We get for the perturbed system

En = hω (n+
1

2
) (24)

Ψ0(x) = (
2mNµ

π2h2
)

3
8 e

−
√
mNµ

2h2
x2

(25)

with ω =

√
2µ

mN
, σ2 =

h√
2mNµ

.

Signal of SSB:-

2nd limit signifies the spontaneous nature of the limit - for an ∞ large system, any perturbation, no
matter how weak, is enough to completely localise the wave function in a single position.

Still, what about finite N? - For larger and larger pieces of matter, weaker and weaker perturba-
tion suffices to make its ground state a localised wave packet! (Hence the symmetric state is unstable
to perturbations, and clearly non-local.)

As per an estimate, even with the lowest measurable force (10−21N, zeptonewton), for a 1cc piece
of iron, localisation can be done to about 10−12 m.(2 orders of magnitude smaller than atomic length-
scales).

So we can see that for finite N, the minimum size of perturbation keeps reducing with increasing
N.

1.8 Is it thermal ?

There is some competition between perturbation and thermal fluctuations in the following sense - at
finite temperature, thermal fluctuations could in principle drive the system to other broken symmetry
states. Perturbations localise the system(i.e. break symmetry), while thermal fluctuations thermalize
the system.
So one could in principle replace the formula

< G > = Tr(ρ Ĝ)
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and carry out the trace in the new basis of SSB states (i.e. ⟨G⟩ =
∑

αGα, where α are the ergodic
sectors and Gα is the avg G in each such sector), since these are the only stable states. Turns out, this
is not correct! (why?)

Why don’t we jump from one SSB state to another?

∆P ∼ 1

δ

=⇒ ∆E ∼ 1

V
∗ 1

δ2

=⇒ ∆t ∼ Vδ2 → ∞

Hence ergodicity breaks and system only explores a reduced part of the phase-space.

1.9 What about non-zero k⃗ part of Hcrystal ?

We collect terms with non-zero k⃗ part of the hamiltonian to get∑
k⃗

1

2m
P̂ (k⃗)P̂ (−⃗k) V +

mω2

2

∑
k⃗,δ⃗

X̂(k⃗)X̂(−⃗k) 4sin2(
1

2
k⃗ · δ⃗)V (26)

Let’s work in 1-D for the time being. Then the δ⃗ summation drops out to one term,∑
k⃗,δ⃗

X̂(k⃗)X̂(−⃗k) 4sin2(1
2
k⃗ · δ⃗) =

∑
k⃗

X̂†(k⃗)X̂(k⃗) 4sin2(
1

2
ka)

where a is the crystal spacing. So we arrive at

Hint =
∑
k

1

2m
P̂ †(k⃗)P̂ (k⃗) V +

mω2

2

∑
k⃗

X̂†(k⃗)X̂(k⃗) 4sin2(
1

2
ka)V (27)

=
∑
k

1

2m
P̂ †(k⃗)P̂ (k⃗) +

mω2

2
X̂†(k⃗)X̂(k⃗) 4sin2(

1

2
ka) (28)

9



which are a set of harmonic oscillators with frequencies ωk = 2ωsin(
ka

2
).

This corresponds to phonon-dispersion relation for a 1d chain.
For small k, we get ωk = (ωa)k, which corresponds to goldstone modes.

1.10 Elitzur’s theorem

• Elitzur’s theorem states that Local symmetries cannot be spontaneously broken by such a mech-
anism.

• The central ingredient needed to prove the theorem is the realisation that for locally symmetric
systems, there cannot exist a singular limit of the kind we encountered for global symmetries.

• Systems with a local symmetry therefore lack the instability that comes with global symmetry
and they are always robust against small perturbations.

Definition 1.1. Example of elitzur’s theorem for free gas

1.11 Another Example: Heisenberg Antiferromagnet

1.12 Miscellaneous

We have a microscopic description of our system: Can be a hamiltonian H governing the evolution of
conjugate momenta and generalised coordinates, configurations spins S⃗

Notes from Chapter 5 of Goldenfeld, Lectures on Phase transitions and RG

1. Thermodynamic limit is non-trivial - Was shown to be ill-defined for coulomb repulsion in 3D.

More generally, for an
1

ra
type interaction in d-dimension, correct thermodynamic limit exists

for a > d.

2. Phase: Region of phase diagram where fb[K] (provided it exists) is analytic in K. Singularities
can have co-dimension differing ranging from 1,2....D-1. Co-dimension is defined by D −Ds.

3. The above definition isn’t well defined - can connect two different phases by going over the phase
boundary. Example: Fluid-Gas transitions in water. This is slightly alluded to the fact that they
both share the same translational symmetry. However, transition to solid breaks it and hence
no such ”off the wall” paths are possible.

4. Order Parameter can be scalar, vector, pseudo-scalar, tensor or even element of a symmetry
group.

5. For the XY model, phase transitions in 2D is decsribed by a non-local order parameter - De-
scribed by Kosterlitz - Thouless transition.

6. Truncation of Landau free energy

L =

n∑
i=0

aKi,T ηi (29)

will describe correct physics of the system depending on the dimension of the system and co-
dimension of the singularity.

C = 1 (30)
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1.13 First Order Phase transitions:

Definition: A phase transition is called first order if the bulk free energy has one or more ∂fb
∂Ki

discon-
tinuous across the transition.
Landau Expansion is predicated on the assumption of a small OP near the critical point. This as-
sumption fails in case of a first order phase transition.
Example is given by adding a cubic term to L (a linear in η is prhibited since the extremising equation
would need to yield η = 0 in the disordered phase)

L = a2η
2 + a3η

3 + a4η
4 (31)

• This makes an η ̸= 0 solution acceptable for certain temperature ranges. This invalidates the
GL expansion.

• Sufficient but not necessary condition for continuous phase transition: Absence of cubic
term in landau expansion.
The case where it fails is Spin-Glass, where we have a cubic term in free energy, but
the minima lies in the negative half i.e. unphysical side of the order parameter and
hence the system still exhibits a continuous 2nd order transition.

• Example:

– In the P-T diagram of water, going from gas to liquid by increasing pressure (at a fixed
temperature) leads to a jump in density difference δρ = ρl−ρg characterising a 1st order
phase transition.

– Below Tc in ising ferromagnet,keeping T fixed, as we vary B from − to +, m jumps
discontinuously.

– For type 1 superconductors, MFT predicts a 2nd order transition. In reality, fluctuations
of EM field make the transition 1st order.

– (Converse) 3 state potts model in 2 dimension is predicted to have a 1st order transition
in MFT, actual transition is continuous.

1.14 Questions

• Can we smoothly go from one broken symmetry GS to another?
No, but it is possible to go from one phase to another smoothly, in abscence of broken symmetry.
Example is liquid-gas transition. Since the transition doesn’t involve breaking of any symmetry,
you can smoothly go from one phase to another.

• Every time a global symmetry is broken, there ∃ a local variable that has long range order/cor-
relations: Proof?

1.15 Examples of continuous phase transitions with discontinuous jumps in some
observable

• (Classical) Kosterlitz-Thouless transition: Continuous but superfluid density jumps - WHY?

• (Quantum) Bose-Hubbard model: Transition between mott-superfluid phase is continuous but
the gap opens discontinuously. Why???

1.16 Finite Size Scaling

1.17 Dangerously irrelevant variables: Why the ϕ4 theory doesn’t violate hyper-
scaling relation?
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