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Chapter 1

Introduction

In recent years, an increasing amount of studies have been made on the phenomena of
unconventional superconductivity. In addition to usual U(1) symmetry, these states can
break a host of other symmetries (crystal rotational symmetry, time reversal etc.) and
can lead to novel thermodynamic and transport properties which aren’t seen in usual
s-wave pairing.

Currently, the phenomenon of superconductivity in M, BiySes has been of some in-
terest (particularly C'u, BisSes which is a doped topological insulator).[2] proposed that
the inter-orbital odd parity pairing symmetry in a strongly spin orbit coupled normal
state might be an explanation for the same. As analysed in [2], this can happen only in
the presence of a two component order parameter. However, as commented in [3], the
current understanding still remains unconclusive as to the nature of the pairing. It is in
this regard that the current thesis aims to study one aspect of this problem, namely, the
phenomenon of half quantum vortices present possible in this material. The organisa-
tion of this thesis is as follows: In chapter 1 half quantum vortices (HQV) are analysed
using the framework of ginzburg landau theory. A concrete realisation of this model is
highlighted in a microscopic example carried in chapter 2. This then helps to provide for
a calculation of spin polarization around vortex states, which is computed for the case
of a overlapping HQV pair. Finally, the thesis concludes with some comments on the

experimental significance of the spin polarization.



Chapter 2

Half Quantum Vortices in a nematic

Superconductor

2.1 Ginzburg-Landau analysis

We start by considering the free energy functional for two order parameters. The con-
struction is based on symmetry arguments done in [5]. This will again be derived from
a microscopic theory in the coming chapter. For the time being we take the form of the
functional defined in the paper directly and try to motivate the physics associated with
different terms appearing in the GL functional.

We assume the system to be uniform along the ¢ direction of the lattice, thus mak-
ing the model effectively two dimensional.Nematic superconductivity is modeled by two
component order parameters (defined as 7,,7,) which arrive from the gap matrix A, =
[(J E)iay]aﬂ with d(k) = 2(nesin(kea) + nysin(kya)) where a is the lattice constant in
the xy plane. The order parameter transforms as a 2D vector under spatial rotation.
However, one can identify (due to the two dimensional nature) 77 with —7, hence it is
best to think of this vector as the nematic director. This also makes it possible to have
a unique vector perpendicular to 77, hence we can expect a dual theory in terms of this

ijL. Following [3], the functional is written as in 7,,n, basis as

-,
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where i = (x,y), p; = —0; + A; (where the units as chosen such that h = —— = 1).
c
The form of the above functional becomes more transparent if we define the same in

chiral basis ny = n, £ in,. Define p; = p, £ ip, to get
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where K;; = K;+ K; and §5 = 1/2+ 3. We can see that the first two terms resemble
the usual GL functional, while the third term couples both order parameters at the quartic
level. If we set Ky = K3, then we see that the first two gradient terms also resemble the
usual s-wave case, effectively making this two copies of the usual s-wave. The final term
describes the mixed gradient coupling between both the order parameters, thus enabling
the possiblity of modulating the spatial profile in a coupled way in presence of a magnetic
field.

[1] analyzed this model and positivity of the free energy led to the following constraints

on the various coefficients:

—1
61 >0 B>—-1 K;>0 1>C>? (2.3)

_ Ko+K3
where C' = 2es.

2.2 Uniform Solutions (without A)

In order to solve for the OPs in this case, gradient terms don’t contribute. Taking only
the homogenous parts, we have the free energy functional
o * ﬁl * 2 2
F=a(nin) + 5[(771 ni)” + Blninil”] (2.4)
cos(0(x))
e @ sin(0(z))
some global phase, 1(z) is a phase difference between order parameters and 7, is the

To solve this system, we set the OP as 77 = 1,,eX(®) [ ] where 0(z) is

value of magnitude of the OP. Clearly for the uniform case, we have 0, a;, ) independent

of Z. This yields two solutions:

, 1
« Case 1: B> 0 We have the form of solution as 7 = 7,eX(®) li } with n? = 2.
i

This solution corresponds to Chiral Phase.

o Case 2: —1 < 3 < 0 We have the form of the solution as 7 = 1, [ ,

solution corresponds to nematic phase.



While the chiral preserve the rotational symmetry (but breaks Time reversal), the
nematic phase breaks spontaneous rotational symmetry. We focus on the nematic phase
as it’s a proposed theoretical candidate for superconductivity in M,BisSes (for e.g.
Cu,BisSes).

2.3 Half Quantum Vortices: Structure

Consider the nematic solution in absence of A = 0 - It consists of two variables, orientation
variable o and angular phase variable 6. Topologically speaking, a phase vortex of the
usual s-wave nature involves winding of the phase variable by 27, however, from the looks
of the solution, we can imagine that one can equivalently construct a single valued OP
by winding each of # and « by 7. This would imply that the vortex encompasses half
quantum of vortex. Quantitatively

inp;b,@:@ooﬁlggb (2.5)

where 0 is the orientation at ¢ = 0 (¢ being the azimuthal angle). We define (n,, , ng)
as the topological charges, associated respectively with phase and orientation winding.
This is the reason why this structure is called half quantum vortex, the phase variable

winds only by during a full rotation.

Figure 2.1: HQV vs PV pair winding depiction: While a PV winds by 27 in it’s phase,
HQV winds 7 in each of it’s dof

Once we ship to the chiral basis, we find that the structure of vortices become

My + N 0 (S 0

(14:11-) = neo( expli=o—0¢ +i—7), exp(i—— ¢>—2;o))d(eii‘f’,l)oru,ei(j)&

Hence every half quantum vortex (HQV) corresponds to one full vortex of n,(or n-)

with in a constant non-zero background of n_. In this convention phase vortex takes
topological charge (42,0). This representation also allows combining two HQVs with the
rule

(£1,1) + (£1,-1) = (£2,0) (2.7)



This can be easily seen by considering each of the above as a single vortex in chiral basis
that add up.

In a usual super-conductor phase gradient is screened at long distances due to the
meissner effect, and the gradient energy is localized around the face vertex and remains
finite. However, since the orientation gradient remains unscreened, the energy cost as-
sociated with it diverges system size. However, for a pair of half quantum vortices,
orientation gradient energy becomes finite and hence is a stable configuration. Therefore
half quantum vortices must always come in pairs with opposite orientation topological
charge (ng).

Numerically, the presence of this HQV structure was done in [6], where the simulation
observed stable configuration of a HQV pair and two pairs of HQV.
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Figure 2.2: Figure depicts B , Ay for a HQV pair.On the first line, the first panel shows
the distribution of the magnetic field, while the second displays the relative phase between
the two components of the order parameter. The second line shows the densities of the
two components of the order parameter. Clearly, the cores in both components do not
superimpose. Since cores do not overlap, the rel- ative phase has +27 winding around

each core. Taken from [(]

This then raises the interesting question which goes as follows: does a pair of HQV’s



essentially merge into a single phase vortex or does it remain as a tightly bound pair at

a finite separation?

2.4 Stability analysis for HQV pair: London Limit

Following [3] we consider the extreme London limit where |7j] is is uniform everywhere
except at the core of the vortices. For very large separation, gauge field A gets screened
out and hence energy in the gauge sector separates for both. However, V@ gradient energy
is still finite and nonzero in the region in between the vortices, but does not diverge with
system size. This interaction is a decreasing function of d, the inter-vortex separation.
Hence at these separations, the vortices attaract each other.

Now when the separation is d < A, A is still uniform while phase gradients are in

place. In the London limit, the free energy is given by
F = Z[|VO]* + Vx| + gl(a x VO)* + (@- Vx)* = (@ VO)* = (@ x VX)’]  (28)

where @ = (cos(0), sin(f)) is the orientation unit vector, Z = Ki|a|(14+ C)/(B1(1 + 51)),
and g = C'/(14 C). We see that on setting Ky = K3 = 0 (i.e. setting the mixed gradient
terms in GL eqn(2) as zero, which amounts to setting g — 0), we get a simple form of the
F. The duality in this theory amounts to the transformation 0 — 0+7%5,7 — Z, g — —g.

C
Since g = ———, we can treat it perturbatively for —1 < C' < 1 as it’s maximum

; 3
value is 0.5 in 1‘51—1;? range. To gain some physical intuition about the g prefixed terms,
let’s set Vx — 0 (because ultimately it’ll get screened due to Gauge field). Now the
remaining term g((4 x VO)? — (- V#)?), which can be understood as (for g > 0) rewarding
alignment of & with V8 while penalising mis-alignment or orthogonal alignment of 4. wrt
V6. Similarly for g < 0.

For a pair of vortices. The net energy of the pair can be broken down into
Fpair = 2Fcore + Fdipole + Eog (29)

where F,,.. it’s just the free energy of a single vortex (due to supercurrents and gauge
sector), Fo, is the logarithmic interaction energy (scaling roughly as log(d), for the d
being the separation between the 2 vortices) and Fipoe is a dipole potential depends on
the relative alignment of the pair to the background 7 at infinity.

We now consider the solution for a single isolated of quantum vortex. The GL eqn
corresponding to eqn (10) is now solved to yield (for a general winding of n, and ng, not

necessarily integers)
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We see that there are residual parts other than the usual winding, however, they don’t
change the topological charge associated with a vortex. However, this eqn doesn’t apply
for ng = 2.

Once we have this, we plug it back into eqn(10) to get the core energy as

2

Foore = Zmln(A/€)(1 - 92 +0(g") (2.12)

We see that the free energy is even in g due to the duality ¢ — —g. The length scales A
and & curb the formally divergent expansion and impose short and long distance cutoffs.
A governs both the screening length of the gauge sector and orientation gradient cost
which is divergent which system size. However, given a pair of vortices, the orientation
gradient energy is finite and limited by the intervortex separation. For the dipole as

shown in the figure below

Figure 2.3: Taken from [3]

with a (1,-1) and (1,1) vortex on the left and the right respectively. The dipole energy
is then given by utilising the zeroth order solution (in g) to the HQV yielding

:¢1;¢2+... (2.13)
0:9w+¢1g¢2+... (2.14)

This yields the dipole energy as
Faipote = Zmcos(200)(—gm + O(g°) ) (2.15)

Since under duality implies 0, — 0o + 5, we need to have an odd series in g on the



RHS to make the F' even. The dipole potential aligns 77 parallel to (or L to) 6 if C is
positive (or subsequently negative).
To find Fj,g, we demand that the expression for 2F,,. match with Fpy when the

separation is limiting to zero. And equating the logarithmic parts on both sides, we get

Fuog = Zain(Afd)( ~ &+ 0(4")

This makes sure that when d — &, we recover the PV energy of F' = Zwin(A/¢) (2 —

g g? +O(g4)). This shows that as we reduce d, Fj,, reduces and hence we see an attractive

behaviour.

2.5 When cores overlap significantly

We would now like to investigate if the cores collapse into a single PV or due to repulsion,
they form a bound state at finite separation. Now one has to do a complete GL analysis,
by taking into account the non-linear structure of the core.

To estimate the free energy cost, we shift to the chrial basis where a HQV is interpreted
as one vortex of n.. We place them side by side with cylindrical shape. The form of the
OP is chosen to be

(145 1-) = Moo ei(%ww)f(?”l)a f(r2)€i(¢2_9°°) ) (2.16)

with 7., = \/—a/[Qﬁg(l + /)], ¢1.2 same as shown in the diagrams. We choose f(r) =
O(¢ —1) + §6(1 — ¢) as the amplitude variation of the OPs. Also assume that core
overlap is significant i.e. d < &.

As shown in the paper by Yip etal in [3] , the terms that decide collapse or separation
are terms in F' that couple both 7, and n_. It is shown that the terms eventually lead to

2
Ent = ch%COS(QQOO)IQ:g + 515&];]5

where Ip3, I are two integrals are decreasing functions of d (i.e. as you increase d, they
tend to decrease). Now depending upon the values of the parameters 03, C, HQV can
separate or collapse. Also, depending on the sign of C, the pair dipole has an alignment
which is same as what we have just below eqn (15) (there seems to be a sign error in the

paper at this point, but nonetheless the phase diagram has been drawn correctly).
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Figure 2.4: Texture of the unit vector n defined as the projection of the superconducting
degrees of freedom onto the spin-1/2 Pauli matrices.The left panel shows a single-quanta
solution, while the right panel correspond to the bound state of two HQV pair. Taken
from [0]

2.6 Summary

We conclude this chapter with a summary of what was explored: We started with the
expression of GL functional for a 2order parameter theory and explored the uniform
solutions of the same. It was found that the theory can settle in two states: Namely
nematic and chiral states, breaking rotational and time reversal symmetries respectively.
Since the nematic phase is a candidate for superconductivity in M, Bi,Ses, an exploration
of it’s low field excitations in presence of a gauge field was explored (since the material
is strongly type 2). This resulted in the interesting case of Half quantum vortex, which
allows for both orientation and phase to wind, presenting itself as an extension to the
conventional idea of a topological defect as PV. Further, by examining the energetics of
an isolated HQV, it’s unstability was shown and finally the interesting case of collapse.
vs bound pair formation for a pair of HQV separated by a large distance initially was
analysed. This study would prove fruitful in the next chapter where an exact microscopic
derivation of the GL functional would be done and this idea of HQV would once again

be analysed.
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Chapter 3

Model Calculations

In this chapter, a model of 3D topological insulator is considered, with particular emphasis
on BisSes. The treatment followed here is a brief review of [0], which acts as a concrete

realisation of the model constructed in the previous chapter.

3.1 Bigseg

BiySes, the mother compound of the doped Bi2Se3 superconductors, has been extensively

studied as a prototypical topological insulator. This compound has a rhombohedral (or

trigonal) crystal structure.

A
B .
Quintuple - .‘g;'g}‘“""e
§ [layer (QL) “
'+\\ B
Intercalation ’
to the vdW gap ‘ ,
Se(2) y
Bi ®
v | ' ' se(1) ® &
a ® Sel
@& Se2
@ (b) Caption 2

Figure 3.1: Schematic description of the crystal structure of the mother compound

Bi2Se3
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The crystal structure consists of Se-Bi-Se-Bi-Se layers, called the quintuple layer (QL).
Between the QLs, there is a van-der Waals (vdW) gap, through which metallic ions pen-
etrate the sample during the synthesis process.

In 2010, the pioneering work by Hor et al. revealed that Cu,BisSes exhibits super-
conductivity below the critical temperature Tc of around 3 K. It was found that the
electronic band structure of CuxBi2Se3 is essentially the same as that of BisSes and that
the surface state originating from the topological-insulator nature of BisSes still exists
even after the Cu doping.

Just after the discovery of superconductivity in Cu,BisSes [45], Fu et al.[2] performed
theoretical analysis on possible SC states realized in this compound.The result is quite
surprising since odd-parity topological superconductivity was predicted even with a sim-
ple pairing interaction. Previously, it had been believed that an unconventional pairing
glue such as ferromagnetic spin fluctuation is required to realize bulk odd-parity super-
conductivity. Very naively, the odd-parity superconductivity in this model originates
from strong orbital mixing on the Fermi surface; when a Cooper pair is formed among

electrons in different orbitals, odd-parity superconductivity is rather easily realized.

3.2 Model Hamiltonian
The hamiltonian of the system is given by H = [ d*7 ¥ (7)1 H (7)¥ ()

eA,

Cc

— e -

H() = 07.[¢ x (=iV = “A)|]- 2 + vy (= iV, = =) +mm, (3.1)
c

where in which v and v, are the in-plane and out of plane components of the Fermi

velocity, A is the gauge field, m is the hopping between different orbitals of BiySes,

o are the Pauli matrices corresponding to spin operators and 7 are the pauli matrices

corresponding to pseudospin degrees of freedom (1,2), e < 0 is electronic charge. The

Electron operator is given by ¥(7) = (¥4 1(7), ¥ 1(7), Y32(7), ¥ 2(F)). Any zeeman
contribution has been neglected for the time being. The dispersion in absence of magnetic

field is given by Ey = \/ v2p% + v2p? + m?2, which is gapped at p'= 0 with magnitude 2m.

3.3 BCS pairing in this model

Pairing via BCS interaction in s-wave channel can happen in multiple ways (singlet
intraorbital pairing, singlet interorbital pairing, triplet interorbital pairing), so there are
multiple choices to make for gap parameter. The general pairing hamiltonian can be

written as

Hie = =3 [ @70l 0l U0 = XS [ 7L 00000 (3.2)
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Defining A, (7) = UT<WTT(F)LU¢T(F)> and Ay (1) = /\<Ll702(7_")LU0/1(F)>. Correspond-
ingly, one defines Al = UT<WL(F)LI7TTT(F)> and A! |, = )\<Wil (F)&DU/Q(F)>. Here A, char-
acterises interorbital spin singlet pairing, while A, characterizes both interorbital spin
singlet and triplet pairings. Also see that we’ve taken zero harmonics of the electron-
phonon interaction since they give higher transition temperature.

Now the complete BCS hamiltonian in expanded form looks like

—

-

Hyey = / () [or. 5 x (=¥ =

> [ @A (P (7) + AP (7 (7)

—,

)} + UZTy( iV, — f) +mT, — N}IIJ(F)

!AT(F)P}
Ur

=5 [ BBl 0l 7) + Ao ) = 25 O] ()

Then we pick the nambu basis as @' = (WT, Q?T(F)(—z'ay)), where the second compo-
nent is understood as : {¥7(7)(—io, )} = io, (&l W] wl, wl,)T and the o, acts on the

spin indices of each individual operator only. In this basis, the hamiltonian is given by

Hbcsz/d?’F@T(f)HBcsf )(F)® +/d3 Z'A F’)I2 | "";(mz} (3.4)
H(r) A(F)

M) —a,H* ()0,
matrix. The gap matrix is denoted by

where the matrix Hges(7) =

] , with each block being a 4 x 4

Ay Ay
—Ay —Ap

Ay Ay
—Ay —Ay

(AL (7 + Ay(7) n A () = Ag(7) .

A(r) = 5 5 7_ (3.5)

L —

TeEiTy
—5

Neglecting spin singlet inter-orbital pairing can be written as A(7) =

where 7 1 =
A (7” A (7”
1(7)+A2(7)

AL 5 A7), where A(7) = (Au(), 4,(7), () with 4,(7) = =1 2,
Ay (F) = =1(An + Ayy) and A,(F) = 1(Ary + Ajp). In this we've assumed inter-orbital
spin singlet pairing to be 0 i.e. Ay — A4 = 0. We further separate the case of (4,, 4,,0)
and (0,0, 4,), due to strong anisotropy already present in the model.

Taking the first case, we redefine them in chiral basis with AL = %(A:C +1i4,). For

further investigation, a GL free energy functional can be derived from microscopics (as

done in [0]) for two component order parameter Ay. This yields the free energy as

A,
F= 2{—|AS|2+|DIAS|2+|DyAS|2+BZ|DZAS|2+BL(D_SAS)*DSA | 2' +olAPIA P

(3.6)
such that the net free energy functional is given as F = h3[3, [ (F (ﬁ) +B- 5) .

13



Various scalings have been done, starting with a scaled order parameter, R as being
a scaled coordinate, scaled vector potential é’(é) st. V x & = B and the operator
Dy = (D,+iD,) in which D = —(H)V R+a(R) with the dimensionless coupling constant
r that characterizes the penetration depth. All these have been explicitly mentioned in

Appendix A along with other parameters 3., 5, & 7.

3.4 Uniform Solutions for the GL functional

The above free energy functional is similar to the one derived in the previous chapter,
differing by gradient along z directions (which we’ll eventually set to be zero for the case
of 2D plane). This term arises from the interaction between SOC and two component
order parameter.

However, similar to the case for functional in the previous chapter, the value of ~
determines the state of the uniform solution: for v > 1 implies a time reversal bro-
ken chiral phase while 0 < v < 1 implies a spontaneously rotational symmetry bro-
ken state. For the first, the order parameter A = Ao(1,+4,0) while for the second
A(_»_%j = Ag(cos(0), sin(6),0) for some real constant |Ag| = 1//1 + 7.

3.5 Spin Polarization

We now change gears and focus on another related property of the states, namely spin
polarization. The nematic state preserves time reversal, hence cannot have a nonzero
spin polarization.

However the chiral state breaks time reversal and can feature nonzero value of spin
polarization. We now state expression for spin polarization using anomalous green’s
function technique, which has been calculated in [6]. The final result is stated here for
brevity.

The final result is given by

/ o+ 2 i[ A7) x & (7] 57
T2 P EL(p)? (iwn + p— B (P))?(iwn — p + EL (D)) '
vT|A|2 d?’* V2 Im( A7) ]2 x VA7) — A3(7)[2 X VA7)
> Gy e (35)
(2m)* B (D) Wi + (B4 (2) — 1))
If we set the intraorbital pairing A; 5 = 0, we get S(7° ‘A X A*( )’ For a nematic

phase, the OPs are real and hence there’s no local spin polarlzatlon. However, for the
chiral state, due to time reversal breaking, we have local polarization. However, as we’ll
see in the next chapter, it is indeed possible to have non-zero local spin polarization in

the case of half quantum vortex bound pair in the nematic phase.

14



Chapter 4

Spin Polarization of HQV

Nematic state breaks spontaneous rotational symmetry however still preserves time re-
versal symmetry. On account of this we expect nematic state to be non-spin polarised.
However near the core of these vortex states due to difference in the magnitude of the
two order parameters a complete time reversal symmetry is absent. Hence we expect
a spin polarisation near the core, which would decrease(and ultimately vanish) in the
bulk of the super conductor. Also naively we expect that opposite windings of two half
quantum vortices would lead to opposite spin polarisation, ultimately cancelling out the
net contribution.

To do a quantitative analysis of the same, we take a pair of half quantum vortices
separated by a internuclear distance less than penetration depth (112 < A). One can redo
this analysis for isolated half quantum vortex, however given the instability of a single
vortex, we take the more realistic situation of a tightly bounded pair that is likely to be

observed in experiments (and has been observed numerically in [0]).

We take the Eqn(2.16) as our form of 2 component order parameter

(114 11-) = 0o (€ OH) [ (1), frg)e@270) ) (4.1)

where f(r) =0(; — 1) + £0(1 — §).
This corresponds to two side by side vortex sttructures with cylindrical symmetry at
an intervortex distance d < £ (hence the non-linear structure of the vortex core is taken

into account). Plugging this into Eqn(3.8), we have

S - / ey v 3 + 202p? @[5(7?) X j*(F)} (4.2)
2 T BGE Gt i B it B '
_ 3 2,2 2 2

£ P B (w1 Ba ()i — i+ B ()

Now we can analyze the solution casewise:-
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« In case the vortices don’t overlap with one another, S (7) is localized to the individual
vortex cores and beyond r = ¢ distance of each core, it simply vanishes. Now the
distribution of S(r) vs r is an increasing function and goes quadratically with r i.e.
oc r2. This however is due to the linear increase ansatz taken for the core f(r) ~ £
However, a more accurate (and smoother) choice should be f(r) ~ tanh(*F), where
v ~ 1 (as is the case for usual vortices). Thus we see that with increasing r, the spin
polarization increases (decreases) from the vortex and then settles to 0 ultimately.

This makes the net spin polarization 0 for the whole system.

 In case the vortices overlap significantly (i.e d < &), let O; be the region of each
core. Then similar to the case above the spin polarization vanishes in the region
O¢Y N OY. In the region of O;/(0; N Oy), we have S(r) o r? as the case above
and similarly for O,/(01 N Oy) (with S(r) o< — (7 — d 7)?) (assuming + sign for the
vortex at origin, and the second vortex being placed at (d,0,0)). However for the
region O; N Oy, we have S(r) o< 72 — (7 — d 7)?. This is essentially overlapping the

two initial S(r) distributions present around initially isolated points.
We plot the Spin polarization S (7) for different vortex configurations as follows:-

o For the case of a single half quantum vortex

Figure 4.1: Plot of Spin polarization for a single HQV

We see that the Spin polarization peaks at the vortex center and decays with the
characteristic length ¢ as we move away from the vortex. However, as discussed
before, this configuration is unstable, as it has divergent energy cost scaling with
system size. For the purposes of plotting, the characteristic profile of ) ~ tan(x/¢)

is taken.

o For a pair of HQV, which is a stable configuration, we again plot the profile. This

is done by taking the vortex core ¢ similar to usual s-wave vortices

16



0.5

S(x.y.2) 0.0

-0.5

X

Figure 4.3: Plot of Spin polarization for HQV pair while overlapping

We see that the net Spin polarization is opposite for two oppositely wounded vor-
tices, while locally S(7) # 0. As the vortices start overlapping, the local contribu-

tions add and cancel each other.

Thus we see that indeed the net spin polarization is 0 with a nonzero local profile.
This can serve as an important identifier for the HQV state, as it carries a spin current
absent in conventional vortices. The corresponding phenomena in superfluid He3 phase
and p-wave pairing Sry RuO, was studied in [1], reaching the conclusion of an additional
(i.e. in addition to zeeman coupling) spin polarization at equilibrium. There it was indi-
cated that the order of contributions due to spin polarization by zeeman and spin vortex
(which corresponds to nematic vortex in this thesis) being equal, opens the possibility of
experimental determination of half quantum vortices. Moreover, in the same reference
[1], the authors commented that a spin current near a HQV can generate effective electric
field which can then be measured. This is something that could be investigated within the

context of the above analysis too. Also, as pointed in [3],local density of states probed by

17



STM may show a twin-peak structure due to the HQV pair. This makes this particular
study important in the current search for explanations regarding superconductivity in
MX Bizseg .
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Chapter 5
Conclusion

In this report we’ve managed to discuss Half quantum vortices in odd parity supercon-
ductors and presence of half quantum vortices in them. As we saw in, presence of multiple
order parameters opens up the possibility of fractional flux quanta and fractional vortex
dynamics. However, energetic still dictate as to whether or not a given HQV pair will be
observed, albeit numerically they’ve been reported as stable solutions. We also see that
presence of HQV pair is also characterised by non-zero spin polarisation and this, along
with other features, can be used to study the existence of HQV bound pair. Moreover,

as remarked in [3], this also serves as way to reject/ accept the nematic hypothesis.

This project was envisaged by my advisor Dr. Alexander Zyuzin, who helped me
throughout the course of several months with constant and sincere support. I am indebted
to him for his guidance and for allowing me to pursue my own chain of investigation,
whenever [ felt the urge to do so. Also, I would also like to thank my co-guide Prof.
Sumiran Pujari for his help during this project. Discussions with him greatly motivated
me to simplify several aspects of superconductivity and revise my standings on several

other topics.
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