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Abstract

Topological quantum matter has emerged as an exciting field in the last decade.
From hosting topologically protected surface states, to possessing potential to for fault
tolerant quantum computing, topology has infused a rich physics into conventional
band theory. Transport wise, interesting properties reveal when a topological insula-
tor is kept in proximity to superconductor forming a hyrbid structure. In such hybrids,
the presence of a magnetic field or a magnetic moment of an adjacent ferromagnet can
spawn zero energy Majorana modes, the focus of much of current research in quantum
computing.

With this background, this thesis aims to study characteristics of Superconductor
- Topological junctions, particularly the effect of surface states on superconducting
parameters such as transition temperatures, critical fields. For the time being, we
focus on T, to see how the non-zero density of surface states influences its value,
the interplay of coherence length with decay length, and how material aspect ratios
influences T.. By reformulating an older method by de Gennes [I], our approach can
possibly yield a simpler methodology to compute T, as compared to other methods
such as quasiclassical green’s function.
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Chapter 1

Setup: Superconductivity in
inhomogenous systems

In this chapter, we review some of the basics of conventional BCS, modified to account
for inhomogenity. This would serve as preparation for next chapter, where we linearize
these equations.

1.0.1 BCS theory

To derive order parameter A(7) and excitation spectrum, one uses mean field method
of treating the pairing term in conventional BCS theory. One particular assumption is
that of "contact potential” - assume that the electrons are interacting by a potential
of the form V (7.7%) = —V (r1)8*(ry — 7). However, the more correct statement is as
follows:

We take the BCS hamiltonian to be

> g
Haos = Y ef) cf g, — & 3l ol c-qucan
ko kg

Where g is a positive constant. The Hamiltonian Hgcg should be interpreted as an
effective Hamiltonian describing the physics of a thin shell of states of width O(,)
centered around the Fermi surface (i.e. the region where a net attractive interaction
prevails). One should keep in mind that there is an implicit assumption of ||, |€,| < wq
in the 2nd term, something that’s generally inserted once energy integrals are done.

1.0.2 Derivation of BdG equations in inhomogeneous systems

Since inhomogeneous systems don’t have translational symmetry, standard BCS the-
ory written in momentum space (see Tinkham) need to be modified.

We try with a real space formulation of standard BCS theory

Hpes = /W(ﬁ o) Ho(F)y(r, o) —V/@DT(F,T)W(ﬁi)?ﬂ(ﬁi)@b(ﬁﬁ

where V is the (positive) strength of the BCS interaction. Now doing MFT with
it gives

Hyp = / W (7, 0) Ho(F) (T, o) + / (A(f’) WIFMYI(F L) + A*(F) wmw(m)
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where Hy(T) = p?/2m+U(F) — p, A(F) = =V {((7,1)¥(7, 1)) (U(F) being one-electron
potential, added to account for impurities).

Now we try the usual prescription to diagonalize the quadratic hamiltonian by
introducing new fermionic operators

O(F) =D (g — ik ) (1.1)

n

77Z}(F7 J/) = Z('Yn,iun + ’Y:EL,TU;;) (12)

n

with the usual fermionic commutation relation given by {Vn.o: Vmo'} = Onm.oo’-
(here n,m are quantum numbers for different eigenstates of Quasiparticles). The re-
sulting hamitltonian looks as

HMF - Eg + Z En’YIL,U’Y’n,U

Brief aside: There are multiple ways to do bogoliubov trasnformation. Each way is
unique to the problem at hand and more often than not, there are additional pieces
alongside BCS hamiltonian. Transformation must diagonalize these pieces too. For a
simple example, Tinkham does the following transformation

Cht = Wi Yko + Uk Vi (1.3)
Cokl = Up Ykl — Uk%io (1.4)

What are 1 & 2?7 They’re analogous to spin up and down (which is what we’ve
used in the our previous bog. transf.) The point to note is that all such bogoliubov
trasnformation generally encompass two things -

e They trade up and down spin for two 1,2 or up, down quasiparticles

e Transformations generally differ by a -ve sign, when comparing k T —k |

How do we determine what u, (1), v, (r) actually are? The idea is to use [Hyr, Y], [Harr, 7]
and then equate each other through relations (1.1), (1.2). This leads to BAG Equations

given by
)= () e

e Caution: u,v appearing here are not to be confused with wu;, v, that appears in
BCS GS wavefunction. The latter doesn’t bear a simple relation to the former
at all. For more on this and an interesting relation between both, see AJ legget’s
course notes.

(Ho(f’) A(r)

e The matrix in eqn (1.5 )is quite insightful: looking at the diagonal entries, we
see that a hole hamiltonian is obtained from an electron hamiltionian by :

— First by changing the sign of H i.e. energy of a hole is equal to negative of
energy of a particle.
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— Then doing H — H* i.e. a version of quantum time reversal operation (this
sets p — —p & — ). This is completely in lieu with the idea that a hole
or antiparticle can be imagined as a particle travelling backward in time. It
is therefore quite natural to interpret u,, as the particle and v,, as the hole
parts of the 2 component spinor.

e BdG equation is an eigenvalue equation of the form Q (u") =€, (Z”), where

n n

Q being hermitian guarantees the orthogonality of (u”)

n

") with eigenvalue ¢,,, we have another

e It can be shown that for every solution (Z

*
n

solution <_u€ ) with eigenvalue —e¢,.

n

e This is a so-called particle-hole symmetry, which is an instrinsic property of BCS
mean field hamiltonian (but in no way of the original H). It lies in the fact that
relation (1.0.2) doesn’t uniquely define the operator v or the constant E;. This
is verified by defining new operators I = 7" and rewriting (1.0.2) in terms of I,
to obtain the same relation but with different constant £’ and operators. (infact
from previous point, we see that the difference term of ) €, =0, so E' = E,)

e Accordingly, the local pairing potential A(F) can be determined by using A(r) =
—V (7, 1) (7, 1)), putting » — + and using the mean value of < ATy >=
N fermi(€n) (no chemical potential occurs here for the bogoliubov particles as they
can created as well as destroyed i.e. they don’t have fixed number. cf. Phonons).
This yields (and this solution is explicit for the case of contact potential —V §(r))
as

AP =V 05(F)un (F) tanh(BE, /2)

This leads to a non-linear self-consistent set of equations taken with (1.0.2). To
ensure convergence, one generally cuts V when ¢, (excitation energy when A = 0
i.e. no coupling of particle hole branch) is higher than wy.

e Normalization: Eigenvalues ¢, are independent of normalisation, however, A(T)
is dependent on it. We implicitly have chosen the normalization [ \un(F)\2 +

o (F)|? dF = 1

For a more general derivation of BAG equation with a general potential V (r; — 1)
instead of the contact potential, checkout the 1st chapter of the book “Bogoliubov-
deGennes Method and Its Applications” by Jian-Xin Zhu.

For completeness, we workout the solution to BAG in some special cases .
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1.0.3 Examples

Case 1: Uniform Homogenous superconductor in absence of a magnetic
field

Because of translational invariance, the quasi-particle eigenstates i.e. n = Ed, where
K is the wave-vector while the spin index- @ is generally some linear combination of
usual spin-index o =1, . Now, from definition A(r) = —V ((7, )Y (7, 1)) , we can
see that any average (¢(r7)1(r2)) ~ f(ri — r3) in lieu of translational invariance,
therefore A(f) = A = const. Moreover, the normalisation condition now reduces to
|uk|2 + |Uk|2 =1. "
= = IRT
We set (u"(£)> = <uk(£)> = (uk> as our solution. Solving for eigenen-
Un(T) Uy (T) Viotia \Vk
ergies F is now straight-forward as we have

Hpae = QK) = <§i —Afk) — FE. (k) = +1/€2 +|A]* (we only take the

positive energy branch as excitation energies) .

N ; ik
To find eigenvectors, we redefine the matrix Q/|E| = ( cos(0r) sin(0x)e )

sin(Oy)e~ % —cos(y)
where ¢, is the phase of A.

We can read off the eigenvectors as 1, = (

cos(0y/2)e'x B sin(0y/2)
sin(6x/2) ) Y- = (—cos(@k/Q)eM’k)

. This parametrisation has the advantage that given v, , one extracts ¥_ by apply-

ing the TR operator and that the normalisation condition is manifestedly satisfied.

Explicitly we have
1 AW 1 3]
21+ 22 ) eidn 1= 2=
2 ( * Ek) ¢ 2 ( Ek)

b= (1.6)
&k $k\ iy

Physically, quasi-particle states are plane waves, with uy, v, being the electron and
hole components of it. But what about the gap A?
This has to be calculated self-consistently as

BE
A=V Z vpuy tanh(—— 5 )

At this point, we put a cutoff on the k-summation here (which is in no way explcit)
b/w [-wg,wq] of Er. The more general eqauation is given by

BE,
A - n( ) tanh 1.7
(r,r)y=V(r—1") E u anh( 5 ) (1.7)
where now the definition of the pairing potential is given by A(r,r’) = —v(r —

)by ()4 (r")) whence the contribution to Hyp comes as [ [, A(r, 7"/)1%(7‘)1&1(7“/) +
h.c. Now putting a contact interaction (so that ' = r in (1.7) ) and imposing transla-
tional invariance (so that A(r,r’) = A(r—7") ug(r) ~ e* uy, vi(r) ~ e * v, cancelling
out the r dependence in (1.7) ) will give us back ((1.6)).
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But to see the idea of putting cutoff explicitly, let’s not put a contact interaction
and instead put the shell-like interaction as done by Cooper with cutoff wp . Now in
k-space ((1.7)) looks like

1 ‘ , .
Voo /r/r/ A(r, r’)e—zk;(r—r) = Vﬁ,qun((_i)%(ﬁ) tcmh(%)

where V , is the matrix element (k, —k|V|q, —¢). We've simply done a f.t. until
now but upon demanding translational invariance, we we get

GE,
=)

with Ay = [ A(r)e”*". Now a la Cooper we set Vi, = Vj but only for &/, || < wa.
Now we get (note that this sets Ay = A)

Ag = Viq uqu, tanh(

A = Vugu, tanh(%) (1.8)
B dk A BEy

1
€ tanh<
2/ A2 + (e — p)?

:>1:V/g(e)d G AQJ;(E_W) (1.10)

wa 1 /N2 1 £2
— 1= g(EFW/ df—tanh(—ﬁ & ) (1.11)
92 s [AZ + ¢2 2
P _ glep)V [ 1 T
T =0lmig 1= 1 /0 d¢ A2+§2§ (1.12)
1
hich gives back A ~ 2 -
which gives bac waexp( gler) *V)

Now similarly as (1.12) we can workout (1.0.3) too to arrive at similar result (i.e.
gap to OK and T,). This then completes the calculation of the pair potential. One can
also calculate dos using this ( done in Zhu’s book eqn 1.125 ).

Case 2: Uniform homogenous Superconductor with a uniform current flow

We want to analyze the quasi-particle spectrum for a state of uniform current dlow,
in a pure superconductor. A state of uniform flow is described by a pair potential
ofthe form A = |Ale?dT, where G is a vector on the direction of flow (the average
momentum per electron in this state is hq).

To proceed, we just modify our homogenous solution by setting uy(r) = e+,
and vy (r) = vee’* 97 Then Hpue becomes

2m ) = |Alo, + (e + E)os + —3 (1.13)

A (k—q) m

AL T
m

= oK) = £\/IAP+ (G +e)t 0 (L14)
retaining terms upto first order in q> EO(]{;) n -q (115)

taking positive eigenvalue m

8 Guru Kalyan Jayasingh



IIT Bombay

We're interesed in the following case (which also explains the retainment of linear
order only): Suppose q ~ %, then ¢ < krp. Now we can see that it’s possible that
the quasi-particle gap can turn 0. However, keep in mind that A = f(vs) too, through

self-consistent calculation.

9 Guru Kalyan Jayasingh



Chapter 2

Superconductor - Normal
Junctions: Perturbative expansion
near 1.

2.1 Introduction

In this chapter, we study T, of superconductor-normal metal junctions. Specifically,
this is a note on the paper titled “Boundary Effects in Superconductors” by P.G.de
Gennes (1964)[1]. The main summary of the paper is as follows:

e [t deals with finite size effects of NS junctions in observable T

e The paper specifically focuses on dirty S - dirty N junction (leaving the clean
case aside)

e Using a linearized BdG equation with small A near T, it tries to get analytic
solutions to T, for different situations.

2.2 Order Parameter and Excitation Spectrum in
a non-homogenous system

For the S-N junction, the value of the pairing strength g (or V; in the paper) is neces-
sarily positive while in metal gy = Viy can either be positive or negative(repulsive in-
teraction) depending on competition between Coulomb repulsion and phonon-induced
interaction.

When Vy > 0, we get a S-S junction at temperatures T < T ,ormar COresp to

normal side superconducting. However, if the strength is small i.e. Vy ES’ then

transition temperature becomes so small for the normal side that we never observe it.
It is in this sense that this paper allows for S-N description, even though naively one
might think it’s really an S-S junction.

10



IIT Bombay

Using this hamiltonian, we can derive the excitation spectrum. Restating the BdG
equations from previous chapter

B A ) (1) _, (1 o)
A*(F) —Hi(r)) \va(T) "\ on(F) '
The spatial dependence of A has some important consequences:

1. We can no longer have u,,, v,, be proportional to one-electron wavefunctions in the
normal metal that solve the eigenvalue problem (p?/2m~+U (1)) w,(r) = € w, (7).
This would be so if A were space independent (solution for homogenous SC).
Physically, this culminates from the fact that it’s not optimal for the system to
pair an electron in state w,, and time-reversed state 7w, together while making
a bound pair.

2. We expect a variation of this kind:

>0 v <0

il

dn | dy

Figure 2.1: Variation of pair potential A(x).Two cases of Vy >0 and < 0 have been

shown. Taken from [!]

Diagram on LHS is for when Vy > 0 (i.e. metal is a SC) and RHS is for Vy < 0 i.e.
metal has repulsive interactions.

3. Boundary Conditions: On microscopic scale, we've A(r), F(r) = (+(r)y,(r)) are
continuous. But when we model the interface between two metals as a sharp
boundary, neither F, nor A is continouous across this surface. It’ll be proven that the
quantity that remains continuous is F'(r)/N(r) = A(r)/(N(r) * V(r)) where N(r) is
the local density of states (per unit real volume, per unit energy) at the fermi level.
4. Theorem : If A(r) depends only on 1-coordinate, then the energy gap Ey (which is

the minimum energy required to excite a quasi-particle) is equal to minimum value
of A(r) in the sample.

2.3 Self-Consistent Solution to the pair potential

The naive method to solve BAG equations is to guess a shape of A(zx), use that to
calculate u,v and then use the resulting u’s and v’s in the self-consistency require-
ment, obtain a new value for A(x) and iterate the process. However, this strategy is

11 Guru Kalyan Jayasingh
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cumbersome and difficult to implement. It turns out to determine T, there is a great
simplification that can be done which goes as follows:

In order to determine T, work near T,. Assuming the system still exhibits a second
order phase transition, now we have a small A, which enables us to treat it as a pertur-
bation in the BdG eigenvalue equation. Using that, we calculate u,v perturbatively and
then plug it back into self consistency equation. Now self-consistent equation looks of
the form A = f(u,v,T), where u,v themselves depend on A (BdG eqn). It becomes
now possible to linearize the self-consistency equation. Because this dependence is
now linear, this engenders a fighting chance of solving the equation analytically and
determining A, T, . This is the principal strategy employed in [1].

This derivation is carried out in Appendix, mostly drawing from [I] and Ch7 of
de Gennes book on Superconductivity. The main results are re-stated as

e A(r) obeys
Alr)y=V(r)Y / ' H, (%, 7)A(F)

where H,(r,r") acts as a kernel.

e H,(r,7") is defined by

1 1
Hw 7 / :T X X * * n / m /
(1) =T g X o X W )
where w = (2k + 1)7/f5 i.e. fermionic matsubara frequencies, ¢, being the

eigenvalues for non-interacting hamiltonian # = p2/2m + U , while wp,(r) are
the corresponding wavefunctions. These include effects of impurities/boundaries
through U(r). Further, we choose w, to be real (which amounts to choosing
standing wave instead of a travelling wave solution. This is possible since H is
real).

One additional property that the kernel H,(r,r’) follows is the sum rule. This
refers to the fact that

/Hw(r, r)dr' = Z ! |w, ()| (2.2)

2 2
€ +w

= N(r) / S U (2.3)

€2 + w?

The last result needs some interpretation. Here, rather implicitly, sum over e, is
carried at the fermi level, and hence naturally we have N(r) as the local density of
state at the fermi level (because of the dangling |w,(F)|°) present. Doing the energy
integral for states at the fermi level i.e. b/w —wy, wy and assuming that wp > T, , we
get the final final result (where wy doesn’t appear).

One can re-write the kernel in terms of a one-correlation function defined by the
relation

12 Guru Kalyan Jayasingh
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Ga(rr') = Z Wy (1) Wi (1) W, (17 )W (Y1) I (€, — €, + ) (2.4)
= G(rr't) 2d7r MG (rr') (2.5)
= G(rr't) = §(7#(0) — r)o(7(t) — ') (2.6)

where the last line can be checked simply by using the integral representation of
the 0 function. Also, as is derived in appendix, the average is done over all states w,
with fixed energy (fermi energy for the current paper). Once G(r,7’,t) is known, then
one can just the full kernel Kj in terms of it using (2.3).

When the electron mean free path is small, then the correlation function (2.6)
spreads according to a diffusion equation

OG(rr't)

a0 DV?G(rr't) = const x §(rr')d(t)

Here D = 1/3vpl. This form makes G(rr't) the Green’s function for the diffusion
equation. This holds when |r — /| > Ap (i.e. uncertainty relations don’t come into
play) and diffusion approximation works (|7 — 7’| > [ and ¢ > l/vr). Now as done in
following derivation, one can extract fourier components of G from the above equation
and then correspondingly derive the fourier components of H,(r,r’) as well. Stating
the final result, we’ve

TN o)/

where &, = (D/2|w|)"/?. And consequently, the largest range corresponds to |w| =
kT, which gives the said coherence length of the material (as in (A.0.5)) as £ =

v/ (7)-

H,(x,2') =

13 Guru Kalyan Jayasingh



Chapter 3

Application: Superconductor -
Topological Insulator Junctions

In this chapter, we work with the model written down in [2], which is a description of
a 3-d Topological insulator adjacent to a superconductor.

3.0.1 Model

The band gaps of topological insulators are much larger than the superconducting
gap of all weak-coupling s-wave superconductors. For the purpose of studying the
proximity effect between suchsuperconductors and topological insulators, it is sufficient
to describe the topological insulator by using the low-energy effective - p Hamiltonian.
For example, in BisSes, this looks like

H=cp) +Ap-a+(M—By-p)p—u

where @ = (2 U) and 8 = <1 0 ) , an usual 3-d Dirac equation. Since €(p)
4x4

0 0 -1
only slightly modifies the curvature, it can be (and from now on is) neglected.
\Ile
With M, B > 0, we see that the spinor has the form iu , where 1,2 are hole and
27
Uy,

particle degrees of freedom respectively. We consider a junction between a metal and

a Ti at z = 0. To describe metal we put A=0 and make A0 for Ti. Moreover, we

want the conduction band of the metal aligned with gap of topological insulator, to

study how surface states, specifically, change the properties of superconducting state.
Therefore, A(z) and u(z) are given by

A= AB(2)u(z) = EfO(=2) + 1O(2)

where p is chemical potential (near the gap) on the TI side. The band structure of
the system can be seen on the next page.

Following [2], a simple model of metal can be considered by switching off A in the
3dTI model.

Hy = diag[M (), M(E), —M(k), —M (k)]
14
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N

TS

Figure 3.1: Schematic of Metal- TI junction. Taken from [2]

with pairing in conduction band given by
mt—ZA 1/J2T ¢2¢ )+hc

where the order parameter is defined by

A (2) = g(2) (Y (¥) 92y (T)) = g (2) /dk|<¢2¢ (Fij» 2) Y2y (—hy, 2))

where we assume that the system is homegeneous along x,y direction ,A is a pure
function of z and pairing is only in metal i.e. g(z) = g O(—2).

The net hamiltonian of the system is

M= / dk“dz{ZwL, (K, 2) [ho — ()] W1, (K, 2) Zw% ky, 2) [ho + n(2)] ¥4, (kj, )

Az)vds (ky, 2) b, (<k), 2) + He
Az) [0 (=02 o + 0], (02) oy + Hee. |+ AG2) [wlikay + vl koo + Hee. |
where hO(EH,Z) =M — Bd? — Bk;ﬁ.

As in standard BCS, we diagonalize the net system with a bogoliubov transforma-
tion, given by

Yir (K 2) = tnio (K 2) Yniey + 0iie (Kis 2) 7)1 1 (K, 2)

which will diagonalize the the hamiltonian as
H = E, +/dk’| > ekl

where E, is the ground state energy and v operators are bogoliubov quasiparticle
operators. Functions u and v satisfy

Hp®(ky, 2) = e(ky)®(ky, 2)
15 Guru Kalyan Jayasingh
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where the BAG hamiltonian is given by

ho—p d-o 0 0

d-o —hy—p 0 —Aio,
0 0 w—nhy d-o*
0 Ao, d-o* p+h

Hpio =

where wavefunction is a 8 x 1 spinor given by
® = (tn, 11, Un,14 Un2t, Un,20s Un,1ts Un,1ls Un,2ts Un,2))
and vector d is given by
dy, = A(2)ky, dy = A(2)ky, d, = A(z) — 10,

The self consistency equation in terms of u’s and v’s is given by like
. E
A(Z) =g (z) /dkll Z unygT <k117 Z) Uﬁ»Zi (—/{11, Z) .tanh (ﬁ%)
n

3.0.2 Linearization of Self-consistency equation: Computing
the Kernel

Following de Gennes’s idea, to obtain 7., we linearize the self consistency equation,
by putting u’s and v’s explicitly from solving the BAG hamiltonian treating A as a
perturbation.

We rewrite the BAG hamiltonian as

o _ (Has A
PIG=\ =N —UH35Ut) o

where H 4p is the net non-interacting system hamiltonain (i.e. metal on LHS, and
TI on RHS i.e. simply set A =01in 3.1). U is given by

U_(O'y O)
0 Ty 4x4

Let’s call the u, as the 4x1 spinor denoting the 1st 4 entries of ®. Similary call
the last 4 entries of ® as v,. Then u,, and v, satisfy

Hyu, + Av, = E,u, (3.2)
~UHiU", — A*u,, = E,v, (3.3)

Now expand u’s and v’s in orders of A as

Up = ud +ul Fud (3.4)

v =0+ v (3.5)

with 1st order corrections taken to be

16 Guru Kalyan Jayasingh
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Now if Hagd, = &ndy then wl = ¢, if &, > 0 and v, = Ug? if &, < 0.
Then we have

(Houy + Hou, ) + A (v) = EJu, + Epu, (3.8)
= E’ul — Hou! = Av? (3.9)
= (EY — &) €nm®n = Avy, (3.10)
AT
= e = [ Cag . (3.11)

which can worked out to yield

* =\ ik — * *
Com = /d?A (?) « (—Z) « [quQT ( r ) ¢n2T ( ;3) t ?;nu (?) ¢n2¢ (?)]

Similarly we find

dpm = /d?A* (?) x (i) x [¢m2T¢n2gt?m2¢¢n2¢]

With coefficients e’s and d’s calculated, we can plug it back into self consistency
equation to get

A(s) = 9(3)/d/€11zu%)¢ (k11,2) v n2¢( ki1, )+U?72T (k11,2) U1173¢<_k1172)

Now the idea is to put the 1st order corrections from above equations. They involve
coefficients e and d, which in turn involve A. Therefore, the RHS will involve an
integral of A. Theregfore, the final result will be of the form

= /K(z,w) - A(w) dw

where K is the linearized kernel. Now we write the form of the kernel

§F:2k:BTZ[ LGP (E.F)+ G2, (5,1)- G (5,1) + G4, (5,F)-G (5, 1)
(3.12)

> Pi,2a (2, 2") P 05(2, ) (3.13)

“ o(x,2’) =

(2

where a, B are spin indices, ¢; 24 is the wavefunction of the non-interacting problem

of metal - Ti junction placed adjacently corresponding to the it eigenstate. Impor-

tant to note that only |£| < wp need to be summed to compute the effective green’s
functions G¥.
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Chapter 4

Discussion and Future Scope

The kernel derived in previous chapter can be computed analytically and the pro-
file of pair potential, consequently, sovled. However, we’ve realized that there are 2
bottlenecks in this process:

e One needs to solve for wavefunctions ¢ by usual rules of standard quantum me-
chanics: Match ¢ and its derivatives at the boundary. Though straightforward,
the leads to 8 equations, which are non-linear in k., k|, which renders comput-
ing effective green’s function tedious. We’ve tried to get around this by working
with the effective hamiltonian near fermi surface, where pairing is predominantly
present. However, this needs to be done with a bit of caution as the matching
problem is non-trivial. For example, one needs to allow for the possibility that
even if an electron from the conduction band is incident on the interface (with
e*® as it’s travelling solution), it can reflect as a hole in the valence band with
a decaying e~#* profile. This make sense as for the valence band, the electron is
above it’s band, so travelling solutions aren’t possible.

e Even if one does solve for the kernel (which we did, albeit some approximations),
this is still a self-consistent equation i.e. LHS and RHS depend on each other.
Therefore, we cannot simply solve it without making further accommodations.
One of the typical ways is to assume a step function profile of the pairing potential
(present only on the metal side) and then solve by plugging it again and again
toarrive at the actual A(z) in an order by order series type of fashion. Although
deGennes bypassed this problem as he could find a differential equation for the
kernel K, here, since K has non-translational invariance built into it’s arguments,
a similar idea is difficult to concoct.

If one uses the method highlighted in second point, one needs to continually solve
for pair potential and set it to 0 to get T.. this would mean that one has T, perturba-
tively, instead of arriving at it in one shot. However, it seems since A(z > () lembdaz,
where A is the decay length for surface state, it could be the case that self-consistent
equation can be simplified, by only taking values of A withing % length of TI while
calculating changes to T,. We are trying to simplify this calculation to predict T, or
atleast provide some boudns on it.
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Appendix A

Derivation of Linearized
Self-Consistency equation for near
T. analysis

A.0.1 A as a perturbation

(This section has been taken from de Gennes chapter 7)
We start with eqn (1.0.2) determining the self-consistency

A(T)=V(r Zv r) tanh(BE,/2)

where u,,, v, are positive eigenvalues of the BdG equations (1.5) given by

Ho(T)  A(r) un (1) _ U (T)
(M6 i) () == (e A
We expand the above equation as a power series in A by expanding u, v order by
order in A
un:ug%—ui—i—...vn:vg—i—vi—k...

Now plugging this back in, we see that u2,v? is propotional to eigenfunctions ¢,

defined by the eqn
P —qA)?
m

To zeroth order we have

Ug = Qbmvg =0 (&n > O)UEL =0, UTOL =, (& < 0)
which gives excitation energies €, = |¢,|. This makes uvy O — = 0, so plugging this
back into (1.0.2) won’t give any corrections. Now we go for ﬁrst order corrections

m m

Plugging this into (A.0.1), mutliplying ¢, in the first, ¢,, in the second and integrating,
we find

(IEa] — Em)enm = / A (P02 (V] + Enn ) = / A" (1) () (r)dE
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Un(T)
check is that if we set A = 0, we should end up with a normalised spinor. Moreover,
normalization is important since the value of A(r) depends on it (but the exciation
energies don’t).

Now we can, once again, use these and plug them back (1.0.2) to get

Here we've set e,,, = 0 to preserve the normalization of < ) An easy way to

AR =V Y (v,@*(f)u;(f) i v#*(f’)uz(f’)) tanh(Bc], /2)

n

Simplifying this and using the fact that U(O)( r) =0, for |£,] > 0 and with a similar
consideration for 2 , along with the fact that tanh( ) is odd in x, we get

/Ksr

K =5 % mnh%/? M s G165 (0
Using the fact that tanh(ﬁg) = 2kgT )", —;ihw’ where w are odd fermionic mas-

turbara frequencies (both +ve and -ve), this further simplified to

K(s,r)=Vk Tzngf _mw §<+)Qz’gfu))

In the paper, is just inner part without the frequency sum in the above equation.
This result is advantageous for the following reasons:

- We've eliminated u,v and instead replaced them with the familiar one-electron
wavefunctions ¢,, - The only unknown left is A = no additional complexity of
solving the BAG equations for new u,v from a given A (in some sense the Kernel
accounts for them)

However, the only caution to be taken is that this would work near T,, where the
linearized form holds.

For the case of B incident on the sample, this kernel needs some modification. de
Gennes section titled “Separation of Magnetic effects” clearly discusses these effects.
I mention one key takeaway from that section:

- On Validity of kernel : It is shown that the integral equation (A.0.1) is valid for
normal metals near T,.. Turns out, for dirty metals, it gets better and one can replace
at **all temperatures®** the linear integral equation by a second order differential
equation of Landau ginzburg form (more on this later)

A.0.2 Impurities, Averaging and Translational Invariance

Consider the kernel K (S, ) in an infinite homogenous medium. If the system is a pure
metal, then it’s clear that it’s a function of s—r. However, for an alloy (i.e. by alloy de
Gennes means a metal with some impurities), this is property is **precluded**. One
way to restore translational invariance is to average over the impurity configurations.
Then the RHS of (A.0.1) becomes K (S,r)A(r) which can then be approximated as
K(5,F)A(F¥) — K(8,7)- A(F). This approximation isn’t strictly rigorous as it neglects
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distortion of pair potential in immediate neighbourhood of impurity, but nonetheless
has been shown to be reasonable. Then the idea is to employ the kernel eqn(A.0.1)
but with averaged A(r) instead of actual, now with the fact that impurity averaged
K(S,T) is just a function of § — .

A.0.3 Relation between K; and a Correlation Function
Simple relations in case of Infinite Homogenous mediums (Clean + Dirty)

Note: K(s,r) is henceforth referred to as Ky (de Gennes differentiates b/w both in
case of A # 0, however that’s impertinent for our 7, calculations. We shall treat them
as the same thing).

The appearance of four wavefunctions in (A.0.1) seems a little artificial. However,
one can represent the kernel in terms of a more physical quantity, a correlation function,
which is immediately known in many cases, making this connection particularly useful.
For simplicity, first we start with a **infinite homogenous™* medium, and do a fourier
transform of K (S,r) to get

K(q) = L / drdsKy(s — f)ei&-@—f*)

zqs —iqr
Cvpsr S e im) - (mle”n)
=V Z (& — zhw V(& + ihw)

w,n,m

where L3 is the volume of solid.

the 1st €% is corresponding to €% while the second corresponds to e
the fourier transform here assumes translational invariance.

“Admonitory Note: This invariance isn’t available to us in in-homogenous situa-
tions, however we can get around it“

Let’s take q along x- direction. Then the matrix elements referred above means

—r. However,

(0] i) — / W ()64, () ¥
Now consider the real function

9(@Q) = (nle'm) (mle™"*n)d(&m — & — )

=" | le [m)|* 6(& — €0 — )

where we average over all states of **fixed energy™* ¢, (for example &, = 0 represents
fermi level) i.e. an avg over all such |n) with same energy. In avg, ¢(q,€2) depends
strongly on €2 but only slightly on ,,. Now supposing we know ¢(d, §2), we can calculate

Ky(q) as

3 (n|e"*|m) - (m|e”""|n)
Ko(d) = VL TZ (&n — ihw) (& + ihw)

w,n,m

de'de  g(d, %)
VkBTZ/ i) g,ﬂhw)
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In the above we’ve put back the implicit assumption that the works only in a thing
ring around Fermi surface in the ¢ integration (hence N(0), the dos at Fermi energy.
ifont size=4, color="red’;jb; Where did another N(0) go?j/bgj/font;). Moreover, this
naturally dictates the energy &, states |n) in (A.0.3), namely that we’ve to average
over states at the fermi level i.e. £, = 0. This a important point to keep in mind: &,
sums are cutoff at wy as in BCS (where &, is just &).

Let’s introduce the Heisenberg operator to write

9% = exp(iHot) e exp(—itot)

which describes the evolution of exp(iqz) in time for an electron in the pure metal
subjected to Ho = p?/2m + U(r). In terms of this operator, **®) ¢(q, ) looks like

9(6,Q) = Z (nle*|m) (m|e™""[n)6(&m — &n — hOQ)

=2 / 2 eap(=i(€m — & — D) (0l Om) (mle " [n) - cap(i(En — &)

_ / s 6th <n’ezqs zqr|n>

Therefore, in order to determine g, one only need determine the correlation function
for e

<€—iqx6iqm(t)>EF — <n|eiq:c(t) 6—iq:c|n>

for an electron at Fermi energy in a normal metal, where we assume that z(0) = r and
x(t) = s . This is quite a simplification.

1. For normal metal: Since for free particle we know that #(t), p(t) evolve math-
ematically in the same way as in classical mechanics (Ehrenfest theorem), we can
replace Z(t) = xg + vpt - cos(f) ( vp because we want to average on fermi sphere),
where vp cos(6) is the x-component of velocity, (since ¢ is in x-direction). Then the
avg yields

(e7iaz(0)giaz®)y |, i / do sin(0)dl exp(iqup - cos(0)t)

— 9(q,9Q) = %/0 stn@df §(2 — qupcos(0))
_ ) Qqueh)™ Q] < qup
0 €2 > qup

2. For dirty metals: For impure metals, () is controlled by a diffusion process, in
lieu of scattering from various impurities. Therefore, we calculate the ¢4*®) correlation
using classical ideas of drift-diffusion equation, which, for a particle starting at x(t =
0) = x, gives the probability P(z,t) of the particle being subsequently present at x
at time t as
(x — x0)?

L i

e
VAar Dt

where D is the diffusion constant. Now we’ve two lengthscales in this situation:
- 1, the mean free path of the electron in the metal - ¢~! coming from e%®, which
provides a characteristic wavlength of spatial variation

P(x,t) =

22 Guru Kalyan Jayasingh



IIT Bombay

Now suppose, [ > ¢~'. This means when taking the average (e~"(0)¢ =) e
have a fast oscillating 2nd term, whose average shall be small. Alternatively, one
can think that we're trying to avergage the wavefunction of a free-particle at two
different times. If the free particle has oscillated much farther than the length ¢~! i.e.
on a scale comparable with that from quantum considerations (e'® is afterall a free
particle), we can no longer just claim that the process is controlled just by diffusion.
Constrast this with the opposite limit viz. | < ¢~!. This means that the particles
oscillates on a much smaller scale than it’s quantum-given-wavelength, and this small
scale oscillation is accounted for by diffusion. Therefore, we can get away by doing a
standard classical average, instead of doing a full quantum average (which, given that
there are impurities, will not be as simple).

Therefore, averaging the correlation (e~**(0¢#*(®)) using the correlation above
(x — )*
LDt

—igz(0) Jigz(t)y | _ ig(z—wo)

(e "N g / N dx e \/me
— /7 e~ T Dl gl < 1

Note that we’ve simply used diffusion equation and not drift-diffusion equation (which
might be a tempation given we’re averaging over fermi surface which allows for a
typical speed vp, so it might be tempting to use this v as drift velocity). This would
unphysical as it would imply that there is some background wind flowing at v that
drifts our electron.

Also, we take diff. coefficient as D = vgl/3 (i'm not sure why the 3 appears here,
but otherwise given what we know of diffusion coefficient, it generally has the form
(62)?/(5t), where we assume that the particle hops dx distance in time §t with a certain
hopping probability. Now, since the correlation is being averaged over fermi-surface,
we can see 0x/dt ~ vp and dx — [ . The latter is easy to see from the derivation
of discretized drift-diffusion equation, where the particle hops to a site spaced dx
from origin and then probabilistically hops to another such site (much like electron
in a metal colliding after traversing [ distance). And given that our electron sits on
fermi-surface, it’s natural to assume that it does such hopping at a rate vp ).

Calculating ¢(q, ?) from this (using (A.0.3) ) we've

sy L _ h.c. I«
9(d, ) Th Q2 + D2g* 27rh{iQ+DC]2 " C} re

A.0.4 Explicit Calculation of the kernel K|

Using the forms of ¢(q,$2) derived above, we can determine Ky(q). We take the
variable of integration as &, hQ) = &' — &.
1. For pure metal First £ integral is performed via residues to get

Ko(§) = N(0)VkgT /‘“’F ds?
o= qurh —qup 2w — 12
2rN(0)VkgTm 4, qU
_ ( ) - B Z 1(_F)
qUE 2|w|
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2. For dirty metals

Ko(q T—
(@) = N(O)Vky Z/ (Dg? + zQ (22w + Q)

N(0)VkpT 1
Z Dq? + 2|w|

(¢l < 1)

A.0.5 Some comments on the above results

- We see that nowhere wp comes up in the calculation of the kernel, which should’ve
been the case since V couples only those states £, & with satisfy |¢], |¢/| < Awp. This
is then reflected in divergence for ¢ = 0 mode (in both cases). One way to remedy this
to explicitly calculate Ky(¢ = 0) and set

Ko(q) = Ko(q = 0) + {Ko(q) — Ko(d=0)}

The divergent Ko(q = 0) piece is found calculated as

tcmh(%)
VLT
Now we cut the energy integral V “p df /85 ( 1 14HLUD )
—tan NO)WV In| ———
Cutof f scale (—wp,wp) / 2§ ( ) ( ) " ]{JBT

For homogenous case, demanding a spatially constant pairing potential means that
Ko(gq = 0) = 1. This can then used to find critical temperature (or more generally,
the highest temperature at which a non-zero root is possible for pairing potential is
defined as critical temperature).

For a exact spatial dependence, an inverse fourier transform reveals:

e For pure metal:

N kyT 1
_ NV, oyl 2R

27:L’UF " ﬁ ‘ B VF

)

where R is s — r. For large |R|, only the lowest matsubara frequency wy, =
+7nkgT ~ +7mkgT, is important, which leads to

K(R) ~ exp(—27m

hfp ) ~exp(—1.13R /&)
1)

hvp
where & = 0.18
kB c

in BCS theory.

which is nearly same as superconducting coherence length

e For a dirty metal

Ko(R) = SSPS S Ceap(— | TR) (R 1)
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The R > [ emerges from ¢l < 1. It might be also resonable to think of the pure
metal as a dirty metal with huge [, the pure metal answer forms the R < [ part
of the above result. We see now the corresponding &g, from the exponential is
read off as (again as we consider the large R and w = +7kpgT, limit)

gdirty ~ SO x

All this works for R > [ limit , which transforms as &gy > 1 = &§ > L.
When this is satisfied, for an alloy (or any medium for that matter), it is termed
as “dirty”.

Comment: We can see that a small mean free path reduces £&. Hence one can
expect that impurities might change a type-I SC (low A/€ ) to type 2 SC (high A/¢)
just by adding impurities. This has been experimentally verified for various impurities
in indium (see de Gennes foot note on pg 224)
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