Bosonization

... and some Applications

Guru Kalyan Jayasingh




Agenda

> Bosonization: Recap
» Example : 4 fermion interactions
» Some non-trivial applications:
> 1: Calculating conductance of an 1d interacting wire

» 2: Calculating the conductance in presence of isolated and
Impurity



Recap

> Peculiarity of 1d: No individual excitations can work
(“Collectivisation” happens)

Position

» Excitations can have fundamentally different nature.



> Crucial excitations of e-gas: Particle-Hole excitations

Destroy a particle at k and create one at k + ¢
implies it has a fixed and well-defined momenta:

p=hq

- Itsenergy: E(q) =&k +q)— k) =¢*+ck - § =
k dep., not well defined!
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Fig. Particle-hole spectrum in 2d (or higher) Fig. Particle-hole spectrum in 1d



» Focus nearg = 0 part:

krq q :

< Elq) > [ke—q, k] = 7 & S6E(q) = max(E(q)) — min(E(q)) = —
» We make two observations:

1. Avg energy is k independent

2. OF goes to zero much faster than < E >

» Meaning: P-h excitations are “well defined” excitations (well defined
energy and momentum) which become longer and longer lived as

when g — 0.

» One then translates an original fermionic problem in terms of these
“excitations” (bosonic) — premise of bosonization.

by ~ k+q Z CorgCk PO = y Oy (x) = p(g) < Z Clj+qck ~ b,
k




Example application

~ For simplicity, let's work with a free-electron dispersion: e(k) = vk
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» How does it look in bosonic language?
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> Now put in interactions :
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» Stretch: same dispersion + 2 species of fermions
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» Bosonic rewrite? -
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» Define two parameters:
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it g,>0, K<1 (repulsive attraction) , K=1 for non-interacting.

K, v characterise such a system (and often are measurable - see
later).
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Define: b, = ¢(x) ~ Z eiqqu , then more transparently
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Applications




Conductance of 1d wires

2e?
. Usual approach computing conductivity (with results such as —)

needs to be modified as interacting system renders such ideas moot.
> Final Result:

While the wire without impurity gives an interesting answer for
conductivity, a wire with isolated impurity displays different physics
altogether (interactions).

» From standard QM, we know for usual 1d wires, 34 transmission and
reflection amplitude from a scattering site. But for an interacting wire,
as we'll see, no matter how small the scattering potential is,
depending on the sign e-e interactions, either T=1 (i.e.full
transmission) or T=0 (full reflection).



Conductance in presence of impurity

v

Start with the imaginary time action:
_ L Lo 2 2
Sp = QK/dT/da: [~ (0:6) +v(3:0)"]
»  Add a term an interaction term of the form
Sint, = / dzdr V(z)v!(z)0(z) .
where V(x) is weak and centred at origin viz. V(x) = Ad(x) for small 4

> 1d QM result (non-interacting)
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non-zero conductance irrespective of size of 4.

» After a little algebra, one ends up with an action
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» One can now compute the conductivity using Kubo formula as
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» However, one takes another approach: namely, we want to compute
the conductance through this barrier at low energies. One way to
do that is to see whether this barrier coupling strength grows or
becomes smaller as we go to lower energy scales. To check that,
performs steps of a renormalization group analysis.

~ Why low energy? - Different models have difterent values for 4,
however they may share the same qualitative properties. So reduce

energy scales till RG flow stops and we end up at the fixed pnt Z.



RG analysis

~ Since perturbation is fixed in space, integrate all variables away
from origin and write down action in terms of ¢(x = 0,7).

S = Sg + Sint > Sei = dw @|¢?
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» 3 step RG procedure:
f Choose a htlg:f \ Divide () into ¢ () (fast modes) Integrate out ¢, (w) and rescale
requenty euto —> and ¢_(w) (slow modes) for —> ©—= 5w
and scale <

> A/ for fair comparison and see how
A= Als, s>1 WA Interactions change



» To the lowest order, one finds that

)\/dT cos2v/mp-(x =0,7) — )\sl_d/d’r cos 2y/m(z = 0,7)

where d is the dimension of the cosine operator, which is K for this
case.

» Therefore, we can further conclude

s =1+dl.
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d\

—=(1-K)A\.

» As lincreases (i.e. RG flow occurs) for K>1 (i.e. g,>0 & repulsive),

barrier strength vanishes. While for K<1 (i.e. g,<0 & attractive),
barrier strength grows. This leads to healing and cutoff of wire resp.



Also, for K=1, coupling is marginal, which is to be expected.

Thus the wire "heals” i.e. T=1 or "cuts” i.e. T=0 iff attraction is
attractive/repulsive respectively.

Similar conclusions are also drawn at strong barrier strength
analysis.



Thank you for your patience!



