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‣ Bosonization: Recap


‣ Example : 4 fermion interactions


‣ Some non-trivial applications:


‣ 1: Calculating conductance of an 1d interacting wire


‣ 2: Calculating the conductance in presence of isolated and 
impurity 
 
  
 
 

Agenda



‣ Peculiarity of 1d: No individual excitations can work 
(“Collectivisation” happens)


‣ Excitations can have fundamentally different nature.

Recap



‣ Crucial excitations of e-gas: Particle-Hole excitations 
 
 
 
 
 
 

‣ It’s energy:  
k dep., not well defined!

Ek(q) := ξ( ⃗k + ⃗q ) − ξ( ⃗k ) = q2 + c ⃗k ⋅ ⃗q ⟹

Fermi sea

Destroy a particle at  and create one at  
implies it has a fixed and well-defined momenta: 

⃗k ⃗k + ⃗q

⃗p = ℏ ⃗q

Fig. Particle-hole spectrum in 2d (or higher) Fig. Particle-hole spectrum in 1d



‣ Focus near  part : 
 

  & 


‣ We make two observations:


1. Avg energy is  independent


2.  goes to zero much faster than 


‣ Meaning: P-h excitations are “well defined” excitations (well defined 
energy and momentum) which become longer and longer lived as 
when .


‣ One then translates an original fermionic problem in terms of these 
“excitations” (bosonic)   premise of bosonization. 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‣ For simplicity, let’s work with a free-electron dispersion: 


‣ How does it look in bosonic language? 

‣ Now put in interactions : 

ϵ(k) = vFk

Example application

Free fermions  Free bosons→

Still Quadratic - Exactly 
soluble!


vF → vF +
g4

2π



‣ Stretch: same dispersion + 2 species of fermions


‣ Bosonic rewrite? -  
 
 
 
 
 
                               

Add interactions

Still Quadratic - Exactly soluble! - Bogoliubov transf 
✓

Possibly Backscattering term Forward scattering term



‣ Define two parameters: 
 
 
 
 
 
if >0, K<1 (repulsive attraction) , K=1 for non-interacting.  

 characterise such a system (and often are measurable - see 
later). 
 
 

‣ Define:  , then more transparently

g2
K, v

bq → ϕ(x) ∼ ∑
q

eiqxbq

Non-interacting Interacting



Applications



‣ Usual approach computing conductivity (with results such as  ) 
needs to be modified as interacting system renders such ideas moot.


‣ Final Result: 
 
While the wire without impurity gives an interesting answer for 
conductivity, a wire with isolated impurity displays different physics 
altogether (interactions). 


‣ From standard QM, we know for usual 1d wires,  transmission and 
reflection amplitude from a scattering site. But for an interacting wire, 
as we’ll see, no matter how small the scattering potential is, 
depending on the sign e-e interactions, either T=1 (i.e.full 
transmission) or T=0 (full reflection).

2e2

ℏ

∃

Conductance of 1d wires



‣ Start with the imaginary time action: 
 

‣ Add a term an interaction term of the form  
 
 
 
where V(x) is weak and centred at origin viz.  for small 


‣ 1d QM result (non-interacting) 
 
 
 
non-zero conductance irrespective of size of .


‣ After a little algebra, one ends up with an action

V(x) = λδ(x) λ

λ

Conductance in presence of impurity



‣ One can now compute the conductivity using Kubo formula as 


‣ However, one takes another approach: namely, we want to compute 
the conductance through this barrier at low energies. One way to 
do that is to see whether this barrier coupling strength grows or 
becomes smaller as we go to lower energy scales. To check that, 
performs steps of a renormalization group analysis.


‣ Why low energy? - Different models have different values for , 
however they may share the same qualitative properties. So reduce 
energy scales till RG flow stops and we end up at the fixed pnt .

λ

ℋ



‣ Since perturbation is fixed in space, integrate all variables away 
from origin and write down action in terms of .


‣ 3 step RG procedure: 

ϕ(x = 0,τ)

RG analysis 

∫
0

−∞
dx + ∫

∞

0
dx

Choose a high 
frequency cutoff  

and scale

Λ

Λ → Λ /s, s > 1

Divide  into  (fast modes) 

 and  (slow modes) for 

 

ϕ(ω) ϕ>(ω)
ϕ<(ω)

ω ≷ Λ /s

Integrate out  and  rescale 



for fair comparison and see how 


Interactions change

ϕ>(ω)
ω → s ⋅ ω



‣ To the lowest order, one finds that  
 
 
 
 
where d is the dimension of the cosine operator, which is K   for this 
case.


‣ Therefore, we can further conclude


‣ As  increases (i.e. RG flow occurs) for K>1 (i.e.  >0 & repulsive), 
barrier strength vanishes. While for K<1 (i.e.  <0 & attractive), 
barrier strength grows. This leads to healing  and cutoff of wire resp.

l g2
g2



‣ Also, for K=1, coupling is marginal, which is to be expected.


‣ Thus the wire “heals” i.e. T=1 or “cuts” i.e. T=0 iff attraction is 
attractive/repulsive respectively.


‣ Similar conclusions are also drawn at strong barrier strength 
analysis.



Thank you for your patience!


