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‣ Introduction 


‣ Generalised BCS and some example gap functions


‣ Properties of observables

Plan



‣ Phase of matter.


‣ Well explained by BCS theory.


‣ Phonon “induced” attraction  
between electrons  form  
Cooper pairs. 

‣ 


‣ Ground state: 

→

H = KE + Attractive part

Superconductivity

E = ξ2
k + Δ2



‣ Add two electrons interacting with each other over a fermi sea.


‣ Specialise:    
 
                       

⃗k 1 + ⃗k 2 = 0 → Ψ(r1, s1; r2, s2) = ϕ(r1 − r2) ⋅ χs1s2
= ϕ(r) ⋅ χ

Cooper problem

‣ 2 electron states:  and , with 


‣ Normal state: , but SC gives    
(normal state unstable)

| ⃗k 1s1⟩ | ⃗k 2s2⟩ |k1 | , |k2 | > kF

ΔE > 2EF ΔE < 2EF



‣ Symmetry Aspect: If we assume that V has full spherical rotational 
symmetry, then  can be expanded in spherical harmonics as 


‣ Doing this expansion decouples the Schrödinger eqn for different 
channels : 
 
 
 

‣ Solving for bound state of electrons i.e.  we get 

V ⃗k , ⃗k ′￼

l

ΔE < 0

ΔE = E − 2ϵF

⟹

 lowest bound state is attained for strongest  “attractive” channel∴



‣ Parity: ,  = 0,2,4,…. (Even parity) and  (odd parity) 

‣ Definition: “Conventional superconductor  pairing in =0 channel. 
Unconventional are all other states with  > 0. ”

(−1)l l l = 1,3,5...

⟹ l
l



‣  

‣ COM at rest, attractive only in a thin shell ( ). 

‣ Gap function now a 2  2 matrix in spin space: 
   

−ϵc < ξk, ξk′￼ < ϵc

×

Generalised BCS theory



‣    wave-function of the Cooper pairs. Separate into orbital and 
spin parts
b̂ ⃗k →



‣ The low energy excitations are given by 


‣ Triplet pairing with non-zero  are 
called non-unitary states, related to pairing with intrinsic spin 
polarization. For such states, there can exist two different gaps:

⃗q ( ⃗k ) = i( ⃗d *( ⃗k ) × ⃗d ( ⃗k )) ⋅ ⃗σ



‣ Isotropic Pairing: conventional ( =0) or s-wave spin singlet  
 
 
 
unconventional: spin triplet “BW state”  (e.g.  B-phase)


‣ Anisotropic spin-singlet: =2 or “d-wave” pairing (e.g. HTSC) 
 
                     

l

3He

l

Examples of Gap functions

Line nodes for (kx, ky) ∥ (±1, ± 1)



‣ Order parameter for d-wave SC on a square lattice is given by 


‣ KE :   tk = − t(cos(kxa) + cos(kya))

D-wave on a square lattice

Δ(kx, ky) = Δ0(cos(kxa) − cos(kya))

Hot spots: ⃗k = (±1, ± 1)
π
2a

Linearising   around hot spots yieldsHBdG

Gapless Dirac excitations !



‣ Anisotropic spin-triplet:  or “p-wave” states (e.g.  A-phase 
and Sr RuO ) 
 
 
 
 
has point nodes for .


‣ Non-Unitary state: e.g. -phase of  
 
 
 
 
pairs in only  state i.e. leaves half of all electrons unpaired. 
Hard to stabilise due to reduced condensation energy. 

l = 1 3He
2 4

⃗k ∥(0,0,1)

A1
3He

| ↑ ↑ ⟩



‣ USCs, with anisotropic gap function, can harbour  quasi-particles 
with “sub-gap” energies.

Properties 

N(E)   for ∝ E2 E → 0

Isotropic

Line Nodes Point Nodes



‣ Node topology  changes DOS. 


‣ At low temp, gap gets saturated. So only QP DOS dominates 
thermodynamics. E.g. Specific heat 
 
 
 
 
thermally activated behaviour (gapped system).


‣ However, for nodal SCs, power law in DOS translates to power law in 
T dependence. For 


‣ More generally,  quantities like ,  and  show power law T 
dependence.

→

N(E) → En, E → 0

Cv κ λ

C(T ) ∼



‣ Apart from microscopics, unconventional SCs can also be treated by 
constructing a phenomenological Ginzburg - Landau functional. 


‣ Strength: can be formulated w/o full knowledge of microscopics, 
based on symmetry considerations.


‣ Additional symmetries can be spontaneously broken too (rotational 
symmetry breaking “nematic” pairing for e.g.).

Symmetries and Phenomenology

G = K × U(1)



‣ BCS supports large class of gap functions.


‣ Pairing can be singlet, triplet, spin-polarised, rotational symmetry 
breaking etc etc. 


‣ Node topology can produce non-trivial effects on thermodynamics 
observables, often even changing the nature of low energy 
excitations. 

Summary



Thank you for your patience!
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‣ Symmetry Aspect: If we assume that V has full spherical rotational 
symmetry, then  can be expanded in spherical harmonics as 


‣ Why? , which must be still be invariant under 
simultaneous rotation of  and , and thus can be written in terms 
of  as 

V ⃗k , ⃗k ′￼

Vk,k′￼ = ⟨k |V |k′￼⟩
⃗k ⃗k ′￼

̂k ⋅ ̂k′￼



BW state

p-wave





Thank you for your patience!


