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Chapter 1

Introduction

In recent years, an increasing amount of studies have been made on the phenomena of
unconventional superconductivity. The original framework of BCS theory described su-
perconductivity as a macroscopic coherent state of Cooper pairs. This was e�ected by
an electron-phonon coupling which leads to an e�ective attraction between electrons. As
worked out by Cooper, the minimal energy configuration enables a contact interaction
and hence electrons are required to form Cooper pairs by the most symmetric chan-
nel, namely the ”s-wave” channel. However, when leaving the realm of electron-phonon
coupling, studies have revealed a host of other pairing mechanisms for example spin fluc-
tuation exchange (with promising candidates in nearly magnetic materials), pairing via
the p-wave/d-wave/f-wave channels (which can lead to the presence of triplet states),
time-reversal breaking in systems, inter-layer BCS type coupling in layered materials etc.
Moreover, the role of other orders, for example, Magnetism, has been greatly studied and
experiments have been done on materials that have shown superconducting behaviour
in the ferromagnetic phase. This opens the possibility of association of superconducting
transition with magnetic quantum phase transition. Then there have been examples of
materials that have shown multiple superconducting phases and other materials where
a superconducting phase develops from a strongly correlated Fermi liquid phase (e.g.
Sr2RuO4)[8]. This thesis broadly aims to study one of these alternative mechanisms,
namely, the e�ect of crystal structure symmetry and the specific lack of inversion sym-
metry on properties of the superconducting phase.

States formed by pairing in a superconductor can be classified according to their
parity (for even frequency), namely as even or odd parity. Following the Pauli principle,
we can associate even parity with spin-singlet states and odd parity with spin-triplet
states. However, this classification, relies on the presence of an inversion centre, so as to
make parity a good quantum no. In systems that lack this parity symmetry, a previously
forbidden spin-orbit coupling term arises. For example, it has been known that in 2D
electron gas, absence of mirror symmetry leads to the occurrence of Rashba spin-orbit
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coupling, given by
HSOC =

ÿ

k̨

–(ky, ≠kx, 0) · ‡̨ (1.1)

This when added to the usual quadratic dispersion, leads to energies being k2

2m ± –|k|,
with circular bands[9]. Observe that H(k̨) = ≠H(≠k̨), thus it is anti-symmetric in its
arguments. This is the reason why couplings of these kind come under the broader class
of Anti-symmetric spin-orbit coupling (ASOC). Now one can ponder over how would the
superconducting behaviour change as we go over di�erent values of –, eventually making
the spin-orbit coupling strength becomes much greater than ∆, the pairing amplitude?
The answer[9] is that we get two following properties of parity broken superconductors:

1. Spin singlet superconductivity remains largely una�ected while we end up de-
stroying two triplet states. This is because for a triplet state to exist, one need---̨k, ø

f
,
---̨k, ¿

f
,
---≠k̨, ø

f
,
---≠k̨, ¿

f
have to be degenerate. This is guaranteed if we have

parity  ̂ as a symmetry, but lacking the same, this degeneracy breaks.

2. Since parity is no longer a good quantum number, spin singlet and spin triplet
states can (and do) mix.

This coupled with the experimental detection[1] of superconductivity in CePt3Si (inver-
sion asymmetric tetragonal structure) sparked great interest in its pairing mechanism,
initially suggesting a mixture of singlet and triplet states. Furthermore, parity breaking
can also lead to a two gap superconducting phase which is starkly di�erent from the case
of BCS. Finally, recent research has been intensely focusing on Majorana fermions (one
particular reason being their use in Quantum computation). Spin triplet superconductors
are of great use in this regard[4] and hence a valuable area to direct one’s e�orts.

1.1 The broad outline of this thesis

The remainder of this report is arranged as follows: In Chapter 2 a brief review of the
paper by Samoilenka et al [7] is given, which forms much of the basis for this report.
We discuss some non-trivial e�ects in the magneto-response of materials with spin-orbit
coupling, particularly the presence of vortex bound states. Continuing this, in Chapter
3 we take a di�erent route and investigate role of fluctuation in these systems. While
their role for conventional BCS is well known[5], we venture to look at two observables:
specific heat and diamagnetic susceptibility and try to calculate the role of ASOC in their
behaviour near critical point. We finally conclude with some comments on the e�ect of
spin-orbit coupling on these fluctuations.
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Chapter 2

Paper Review

The aim of this chapter is to review the paper ”Spiral Magnetic Field and vortex clus-
tering in non-centrosymmetric superconductors”[7] by Samoilenka and Babaev, which
presents a microscopic model of the non-centrosymmetric superconductors.
We’ll particularly highlight key-approximations and results derived from a microscopic
model and set the stage for fluctuational calculations done in the next chapter.

2.1 A microscopic derivation of the Ginzburg
Landau model

In systems with lack of inversion symmetry, new terms with, previously not allowed on
symmetry considerations, now e�ect a change in the qualitative properties of a given
sample. In case of non-centrosymmetric systems, the so called rashba term leads to one
additional term in the GL functional of the superconducting phase.
This paper looks at specific NCS (non-centrosymmetric) superconductors that have space
group ’O’ or ’T’ symmetry (both lack inversion centres, for e.g. O is derived from cubic
Oh by excluding it’s inversion center).
The paper starts with a model hamiltonian of the BCS kind with a simple Hubbard type
attractive potential, of strength given by V > 0, and includes spin orbit coupling and a
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space dependent magnetic field B̨(x̨). The hamiltonian is given by

H =
ÿ

–

E
1
≠iÒ ≠ q

≠æ
A

2
Â†

– (≠æx , ·) Â– (≠æx , ·) ≠ V Â†
øÂ

†
¿Â¿Âø +

ÿ

–,—

Â†
–

1≠æ
h ·

≠æ‡ –—

2
Â— (2.1)

≠æ
h = “̨

1
≠iÒ ≠ q

≠æ
A

2
≠ µB

≠æ
B (2.2)

≠æ‡–— = (≠æ‡ )–— (2.3)

where single a particle spectrum is given by E(≠ir) (which is k2

2m for free electrons)
while “̨(k̨) denotes the spin orbit coupling. In case of O/T symmetry, “̨ has a simpler
form given by “̨(k̨) = “0k̨ [2]. Writing a path integral for the same, we replace Œ from
fermionic operators to Grassman fields a–(x) to obtain

S =
⁄ —

0
d·d≠æx

ÿ

–,—=¿ø
a†

–(h · �–—)a— ≠ V a†
øa

†
¿a¿aø (2.4)

where

h =
1
ˆT + E ≠ µ,

≠æ
h

2
, �–— = (”–—, ≠æ‡–—) and

≠æ
h = ≠æ“

1
≠iÒ ≠ e

≠æ
A (≠æx )

2
≠ µB

≠æ
B (≠æx )

(2.5)

The standard case of Ą(x̨), B̨(x̨) varying slowly wrt 1
kF

length scale is assumed. Fur-
ther assumptions which are made are as follows:

µ ∫ ÊD ∫ Tc (2.6)

“0kF ∫ ÊD ∫ µBB (2.7)

The first of these are valid from standard BCS limits, while the 2nd ones need some
explanation: µBB have typical value of 60µeV for 1 T magnetic fields while ÊD typically
have magnitudes in the 25 ≠ 50 meV , hence justifies the 2nd inequality. However, the
1st inequality isn’t clearly justified since materials have energy split due to spin orbit
coupling, given by “0kF (for O symmetry) ranging from 25-200meV in some cases (with
many lying in same order as ÊD. See table 1 in [9]). Hence, I think it’s a particular
limit that the authors wished to take to simplify their calculations for obtaining the GL
functional.
We apply a Hubbard-Stratonovich decoupling to the interaction term (similar to BCS
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case) and write

exp
5
V

⁄
d≠æx d·a†

øa
†
¿a¿aø

6
=

⁄
D

Ë
∆, ∆†

È
exp(≠

⁄
dtd≠æx

C
∆†∆

V
+ ∆†a¿aø + ∆a†

øa
†
x

D

)

(2.8)

However, since h · ‡–— isn’t diagonal in a†
–, a— i.e. ÷ a h̨ · ‡̨ term that mixes spin

(this was expected due to inclusion of spin orbit). Hence, we redefine a new grassman
field b = (aø, a¿, a†

¿, a†
ø) by expanding our degrees of freedom and write the new H-S

transformed partition function as

Z =
⁄

D[∆†, ∆]D[b]e≠
s

dx̨d·(bT H

2 b+ ∆
†

∆

V
) (2.9)

where the matrix H is defined as

H0 =
Q

a0 ≠hT

h 0

R

b , » =
Q

a”† 0
0 ”

R

b (2.10)

where by T it is meant transpose i.e. taking the matrix operator h = h ·� and doing
a transpose. Also ” = �(0, 0, i∆, 0) with the usual dot product in R4. Also, note that
for any derivative operator, transpose is defined by fT ( ˆ

ˆ· ,r) = f(≠ ˆ
ˆ· , ≠r).

This form is useful since now integration over fermionic fields can be exactly done due to
berezin’s formula yielding

Z =
⁄

D[∆†, ∆]e 1
2 ln detH≠

s
dx̨d· ∆

†
∆

V (2.11)

Now a mean field approximation of ∆ is made in which one assumes that it doesn’t
depend on time (i.e. doesn’t fluctuate thermally). Then we can write the free energy as

F =
⁄ ∆2

V
≠

T

2 Trln H (2.12)

where by Tr we mean that H = H(x̨, ·) is a matrix for every x̨, · and we need to take
a trace over the same while integration is over dx, d· . To arrive at the GL functional,
we need to expand the 2nd part of trln H in powers of ∆. This is done by the following
clever trick:
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Define f̂ , ĝ s.t.

ĥ (≠iÒ) f̂ = ” (x ≠ xÕ) ” (· ≠ · Õ) (2.13)

ĝ = e„◊(x,xÕ)f̂ , „ (x, xÕ) = i · e
⁄ x

≠æ
xÕ

A (≠æx1) d≠æx1 (2.14)

ĥ
1
≠iÒ ≠ e

≠æ
A

2
ĝ = ĥ

1
≠iÒ ≠ e

≠æ
A

2
◊ e„(x,xÕ)f̂ (2.15)

= e„◊(x,xÕ)ĥ (≠iÒ) f̂ = ” (x ≠ xÕ) ” (· ≠ · Õ) (2.16)

Then we have

* ĥĝ = ”
3

≠æx ≠
≠æ
xÕ

4
” (· ≠ · Õ) (2.17)

∆ H≠1
0 =

Q

a 0 ĝ

≠ĝT 0

R

b (2.18)

) Tr log H = Tr log
1
1 + H≠1

0 »
2

=
Œÿ

“=1

(≠1)‹+1

v
Tr

Ë1
ĝ”̂ĝT ”t

2È
(2.19)

We can further fourier expand ĝ to get

g (· ≠ · Õ, ≠æx ≠
≠æx Õ) = eie

≠æ
A(≠æx )◊(≠æx ≠≠æx ,)

◊
1
—

|Ên|<ÊDÿ

Ên

1
(2fi)3

⁄
d
≠æ
k ei

≠æ
k (≠æx ≠≠æx Õ)

◊ e≠iÊn(·≠· Õ)f
1
Ê÷,

≠æ
k

2

(2.20)

This can then be used to expand eqn(2.19) in orders of ∆. For GL, we clearly need 2nd
and 4th order terms as computed in the paper. We’ll use the final result (which has been
calculated explicitly in the paper) which yields:

F =
⁄

d3≠ær

S

U– |Â|
2 +

ÿ

a=±1
Ka

---
1
vaF Dú

≠ 2aµB
≠æ
B

2
Â

---
2

+ —|Â|
4
T

V + 1
2(B̨ ≠ H̨)2 (2.21)

where all the quantities have been listed in Appendix A. Note that F is clearly bounded
from below, hence is a well defined GL functional.

2.2 Rescaled form and Magnetic field configurations

We can redefine variables by

≠æx = 1
Ô

≠–
·

A
—

2 · e2

B1/4
≠ær , ∆ =

Û
≠–

2—
Â

F =
Ô

≠–F Õ

2 ◊ (2 ◊ e2)
3
4 —

1
4
,

≠æ
A = 1

2 ◊ e
◊

r

x

≠æ
AÕ
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such that the functional looks like

F =
⁄

d≠ær

S

WU

1≠æ
B ≠

≠æ
H

22

2 +
ÿ

a=±1

|DaŒ |
2

2kc
≠ |Â|

2 + |Â|
4

2

T

XV (2.22)

where Da = ir ≠ Ą ≠ ‰aB̨, ‰a = “ + a‹ (see full definition in Appendix A). We see
that new terms in the gauge invariant derivative have come upon: “ is due to SOC, while
‹ is due to zeeman coupling. Upon extremising eqn(2.22), we get a set of e�ective GL
equations:

ÿ

a

D2
aÂ

2Ÿc
≠ Â + Â|Â|

2 = 0, c.c = 0 (2.23)

r⇥
S

UB̨ ≠ H̨ ≠
ÿ

a

‰aJ̨a

T

V =
ÿ

a

J̨a (2.24)

where the new current is defined by J̨a = Re(ÂúDaÂ)
Ÿc

. Corresponding boundary conditions
are (for n̨ being normal to the boundary)

n̨ ·
ÿ

a

DaÂ = 0 (2.25)

n̨ ◊

C

B̨ ≠ H̨ ≠ ‰aJ̨a

D

= 0 (2.26)

One of the upshot of doing this gymnastic is that we can directly read-o� the coherence
length by setting Ą = 0 in (2.23), which is the only length-scale present in the problem
(at 0 field of course) given by

› = 1
Ô

2Ÿc
(2.27)

2.3 Magnetic field equations

We now explore the equations accounting for the magnetic response under spin-orbit
interaction. We work in the London approximation, which is valid for type-2 supercon-
ductors near the lower critical temp (when the 1st vortex starts forming). Under this, we
take the density variation to be small as compared to magnetic field decay length-scales
(which is valid if ŸGL ∫ 1). We’ll see later that this can be stated in terms of values of
Ÿc.
We take Â = 0 at vortex region(r < ›), while for r > ›, we recover the bulk phase value
ei„(r̨). Taking the curl of eqn(2.24), we get

ËŸc

2 + “2 + ‹2
È
r⇥

1
r⇥ B̨

2
+ 2“r⇥ B̨ + B̨ = ≠r⇥r„ ≠ “r⇥ (r„) (2.28)
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This might give the impression that it’s impossible to solve for B̨ since we don’t yet have
a form for „(r). However, here we’re only interested in greater than › limit, where the
RHS is zero (since r⇥r„ ≥ ”(r̨)ẑ). In the paper, to make equations mathematically
more transparent, it’s re-written in the following form

$$úB̨ = 0, $ = ≠÷ + r⇥ (2.29)

where ÷ = ÷1 + i÷2 = ≠“ + i÷̃2
“2 + ÷̃2

2 , ÷̃2 =
Ú

Ÿc

2 + ‹2 (2.30)

with $$ú = $ú$ (commuting operators). This leads to the solution of B̨ as

≠æ
B = Re≠æw , $≠æw = 0
≠æw = ≠æ

T + 1
÷

·

1
Ò ◊

≠æ
T

2
,
≠æ
T = Ò ◊ (≠æv f (≠ær ))

where we allow v̨ to be take values v̨ = const / Ã r̨ for the case of vortices and surface
currents. Under this transformation, w̨, f are related by

≠æw = ÷fẑ ≠ ẑ ◊ Òf (2.31)

with f satisfying

Ò
2f + ÷2f = 0 (2.32)

This leads to a direct form of free energy given by

F =
⁄

d≠ær

I
n≥2

2
kC

·

1
|Òf |

2 + |÷f |
22

≠
≠æ
B ·

≠æ
H

J

(2.33)

There are a few point to note here: Above expressions are valid for both vortices
and surface currents (for meissner e�ect, we set the voritces to 0). It’s also general i.e.
works both for centrosymmetric and non-centrosymmetric cases. To see a special case of
the latter, namely “, ‹ = 0, we get (2.24) to be the standard GL equation discussed in
textbooks. However, the utility of having (2.32) is seen in non-centrosymmetric cases.
Using this equation, we’ll now investigate meissner state and vortex properties one by
one.

2.4 Spiral Meissner State

Consider a superconductor present at half plane x > 0. To look at meissner state be-
haviour, we solve eqn (2.32) to get f = cei÷x, for c being a complex constant, which is to
be derived from the boundary conditions (2.26)
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n̨ ⇥ Re

C

i
W̨

÷
≠

Ÿc

2÷̃2
H̨

D

= 0 =∆ c = ≠iŸc

2÷2
H̃ (2.34)

where H̃ = Hz +iHy (also we used the fact that r⇥w̨ = ÷w̨ and r⇥Ą = B̨, employing
B̨ = Re w̨ we get Ą = Re W̨

÷ ). Using (2.31), we get the final form of magnetic field as a
f(x) as

B̃ = Bz + iBy = ≠
i÷Ÿc

2÷̃2
H̃ei÷x

Ã e≠÷2x+i÷1x (2.35)

Note: First observe the oscillatory exponential. This means that both Bz, By will os-
cillate with same wavelength and similar to a helix, this’ll exhibit a spiral curve as it
traverses the material. The period of rotation will be 2fi

÷1
, while the penetration length

will correspond to 1
÷2

. Also, since ÷1 Ã “ hence we see a direct macroscopic e�ect of
spin-orbit coupling. If “ = 0, rotation ceases and we’re back to the usual meissner e�ect.
From here, we can assert that “ is a measure of degree of non-centrosymmetricity of the
model. The plot of B̨ is shown by

Figure 2.1: Decay of B̨ inside the sample. Taken from [7]
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2.5 Cross Over to Type 1 at high temperatures

The GL parameter for the theory reads

⁄

›
=

Ô
2Ÿc

÷2
= Ÿc

1 + 2
Ÿc

(“2 + ‹2)
Ò

1 + 2‹2

Ÿc

(2.36)

We see (refer to the list of quantities on Appendix A) that “
‹ is temp independent, while

both of them have strong temp dependence (with factors of T 3/4 in it). We also have
“, ‹ Ã

Ò
|–| with “

‹ = const. This has two consequences:

• Near Tc, – æ 0, hence ŸGL = Ÿc

• As T is lowered, ŸGL increases. This means that if we started with a type 1 sample
near Tc, at lower temperatures, the material can support vortices and turn type 2,
provided non-centrosymmetricity (i.e. “) is strong enough to achieve ⁄ > ›. This
behaviour was reported in non-centrosymmetric superconductor AuBe[6].

2.6 Magnetic field inside a vortex

We first setup the equations for a single vortex. In order to do so, we need to solve (2.32)
in the case of a single cortex placed at x, y = (0, 0) (and assuming that it’s translationally
invariant along z-direction). In polar coordinates this leads to

fl2fflfl + flffl + ÷2fl2f + f◊◊ = 0 (2.37)

This is solved by expanding in Hankel functions as

f =
Œÿ

j=≠Œ
cje

i j◊
H

(1)
j (÷fl) (2.38)

We select hankel functions of 1st kind since they conform to f(fl æ Œ) æ 0. To
figure out the coe�cients cj, we match the RHS of (2.28) to get an equivalent condition

r2f + ÷2f = ≠2fi÷n”(x, y) (2.39)

for a vortex with a phase winding n. This leads to

r⇥r„ = 2finẑ”(x, y) = nẑr2lnfl (2.40)

where the 2nd equality can be easily arrived by appealing to the same in 3D, where it well
known from electrodynamics texts (for e.g. Gri�ths). Since only H

(1)
0 æ

2i
fi ln fl, forfl æ
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0, we discard cj for j ”= 0. This leads to B̨ given by

B̨ = Re
Ëifi

2 n÷ (÷ẑ ≠ ẑ ◊ rf)H(1)
0 (÷fl)

È
(2.41)

In polar coordinates, it leads to

B̨ = Re
Ëifi

2 n÷2
1
0, H

(1)
1 , H

(1)
0

2È
(2.42)

If we take the limit fl æ Œ, we find that H
(1)
1 æ ≠iH(1)

0 Ã
ei÷fl

Ô
fl . This yields

B̃ = Bz + iB◊ Ã
ei÷fl

Ô
fl

(2.43)

hence a spiral like behaviour for magnetic field inside vortices too. Note that the period
of the spiral will still be determined by ÷1 Ã “, hence SOC has the general feature of
e�ecting spiral decay of magnetic field - both for vortices and for meissner state.
The plot for the same looks like

Figure 2.2: Spiral decay of the magnetic field inside a vortex. Taken from [7]

Using eqn(2.33), we can obtain the energy of a vortex F (note that this is gibbs free
energy) as

Fvortex = 2fin(nHc1 + H) (2.44)
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where Hc1 is given by

Hc1 = ÷̃2
Ÿc

Ë
÷1 arctan

÷1
÷2

+ ÷2 ln
2e≠“euler

|÷|›

È
(2.45)

2.7 Intervortex interactions and bound states

One of the key results of the paper is the oscillatory nature of the interaction between
vortices. Consider a set of vortices with cores at r̨i with windings ni respectively. Then
(2.32) becomes

r2f + ÷2f = ≠2fi÷
ÿ

i

ni”(x ≠ xi, y ≠ yi) © ÷�̨ (2.46)

which yields a simple solution from linearity as

f =
ÿ

i

ifi

2 ÷niH
(1)
0 (÷|r̨ ≠ r̨i|) (2.47)

Now we can extract the net energy of vortices by doing doing this integral, which is
exactly calculable since it involves only ” functions. And now we subtract the initial
energies of single vortices to get the net result, which is

U(R) Ã n1n2e
≠÷2Rcos(÷1R + „0) (2.48)

This shows that interactions are non-monotonic and hence the system will form vortex-
vortex pairs, preferably at distances corresponding to local minima of U, appearing at
periods of 2fi

÷1
. The graph for the same is plotted below. Exact temperature dependence

of U is due to other parameters like ŸC that appear in the expression (which brevity has
been suppressed).
One way to get an intuitive idea of why such oscillatory behaviour can be expected is to
recall that vortices feature a circularly polarized magnetic field (one that decays spirally).
Hence when we superimpose two or more of these vortices, we get an interference pattern,
formed at regular intervals of 2fi

÷1
. The authors suggest[7] that this can lead to formation

of vortex lattice with intervortex distance being at one of the minima.

2.8 Conclusions

This paper explores a model of NCS superconductors, starting from a microscopic hamil-
tonian. The Ginzburg-landau functional (positively defined in this case) is extracted from
mean field approximation. Using that, we see the stark di�erence of behaviours from usual
BCS superconductors in terms of magnetic field response. First of all, meissner e�ect is
non-trivial due to presence of spin orbit coupling and shows a spiral decay. The same is
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Figure 2.3: Intervortex interaction as a function of temperature. Taken from [7]

also observed for magnetic field of vortices. Finally, we see a non-monotonic behaviour
of vortices, which can lead to bound states (vortex lattice) and also a cross-over to type
1 superconductors. We conclude this chapter by stating that this model also o�ers other
behaviors like vortex-boundary interactions which we haven’t considered here. We rest
this discussion here and now focus on the fluctuational characteristics of NCS materials
in the next chapter.
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Chapter 3

Fluctuation studies

3.1 Introduction

In general theories of superconductivity, the notion of quasi-particles find a natural place:
namely that the BCS problem is essentially an uncoupled problem of bogoliubons, vacuum
of which is represented by the BCS ground state. BCS also utilised the idea of mean
field theory, which is tantamount to the hubbard stratonovich transformation done in the
previous chapter. However, it’s almost natural to ask if one needs to consider fluctuations
over MFT or quasiparticle description. The grand success of BCS theory lies in the
fact that fluctuation corrections are negligible wrt MFT answers, thus rendering the
approximation impeccable.
However, in materials like high temperature and organic superconductors or even lower
dimensional superconducting systems, the observed phenomena are starkly di�erent from
those predicted by mean field ansatz(either by GL or BCS). The transition from normal to
superconducting phase appears to be much more smeared out and precursor e�ects of the
superconducting phase appear in the normal phase, even far from Tc. This is characterised
by increase of specific heat, diamagnetic susceptibility, conductivity etc. in the vicinity
of transition. Moreover, fluctuations have been shown to have dynamical consequences
as well, with smearing of resistive transition in thin films detected experimentally(see the
paragraph after eqn (10.1) in [5]). Inspired from these observations, this chapter tries
to investigate the e�ect of fluctuation in NCS superconductors in the GL framework.
Importantly, we’re motivated to understand the role of spin orbit coupling in fluctuations.
The basic paper that is followed is given by Larkin and Varlamov[5].

3.2 Fluctuation in superconductors

Fluctuation deals with cooper pairs that are out of the condensate. They di�er from
well-defined quasi-particles in a few ways
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1. They have finite lifetime, inverse of which is of the order of their binding energy.
The lifetime is given by

·GL = fi~
8kB(T ≠ Tc)

(3.1)

· diverges as T reaches Tc. This is has been derived from a microscopic theory
for fluctuations( see relevant sections of the paper by Larkin and Varlamov). In
contrast, for well-defined quasi-particles, the energy has to be much larger than it’s
inverse lifetime.

2. They have large size ›fluc(T ).
›fluc is defined as the distance that the pairs travel/move during their lifetime
·GL. The movement is estimated to be a free electron type (i.e. di�usive for dirty
superconductors and ballistic in clean ones). For clean superconductors, ›fluc comes
in the same order as ›BCS.

3. Treatment in Rayleigh-Jeans sense: Fluctuation pairs, instead of being Boltz-
mann particles, are rightly described by classical fields. Their distribution is
mostly in the sense of BEC with lower moments

n(p) = 1
eE(p)— ≠ 1 ≥

1
—E(p) (3.2)

And GL gives us E(p) near the critical point( quadratic). It can be shown that[5]

nsfluc
≥ ›≠1

fluc (3.3)

This is di�erent from BCS, where ns ≥ ›≠2
bcs.

4. Microscopic vs macroscopic treatment of fluctuating copper pairs:
Contributions of the fluctuations have both microscopic (quantum) and macroscopic
(like classical fields) e�ects. Quantum e�ects include quantum interference in the
pairing process, renormalization of the density of one-electron states in the normal
phase etc.
However, quantities like specific heat, diamagnetic susceptibility can be treated by
direct cooper pair contributions and hence be treated in GL framework.
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3.3 Fluctuation calculations for model hamiltonian

To perform these calculations, we take the form of GL outlined in eqn(2.21). This is has
the form

F =
⁄

d3≠ær

S

U– |Â|
2 +

ÿ

a=±1
Ka

---
1
vaF Dú

≠ 2aµB
≠æ
B

2
Â

---
2

+ —|Â|
4

T

V + 1
2(B̨ ≠ H̨)2 (3.4)

with the constants defined as (see appendix A for a complete list)

– = N ln T

Tc
, Ka = 7 ’ (3)

6 · (4fiT )2 · Na (3.5)

— = 7’ (3)
(4 ◊ fiT )2 N, N = N+ + N≠

2 , vaF = E Õ(kaF ) + a“0 (3.6)

3.4 Non-critical Fluctuations: Specific Heat

Now we calculate one of the simplest of observables, specific heat, using fluctuation theory.
This will later be extended to the more experimentally relevant susceptibility calculation
in the coming section.

3.4.1 Mean Field Jump

First calculating the mean field-jump discontinuity in Cv in case of B̨ = 0.

F =
⁄

dV

C

a |Ï|
2 + b

2 · |Ï|
4 + “ |ÒÏ|

2
D

(3.7)

where a is same as – in the earlier equation. Let 2b = �,a1 = N

|Ï|
2 = ≠

a

b
, F = ≠

a2

2b
V = ≠

V

2b
a2

1 log2 (1 + ‘) (3.8)

This gives

CV = ≠1
V Tc

·
ˆ2F

ˆÁ2 = a2
1

2bTc
·

ˆ2

ˆÁ2 · log2(1 + Á) (3.9)

=
A

a2
1

2bTc

B

·
ˆ

ˆÁ
·

5
2 · log (1 + Á) ·

1
1 + Á

6 ---
Á=0

(3.10)

∆ ∆CmF = a2
1

bTc
(3.11)
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Note that till this is mean field solution, where we haven’t included fluctuations (as
can be seen from the standard GL expression in eqn(3.8)).

3.4.2 Fluctuation Contribution: T > TC

Here mean field vanishes and only fluctuations contribute. We assume small fluctuations
and neglect the quartic term for now. Also, we currently work in 3D. Now we have

F =
⁄

dV
5
a

---Â
---
2

+ “
1
ÒÂ

226
(3.12)

Â = ÏmF (0 = 0) + Ï (3.13)

F [Ï] =
⁄

dV
Ë
a |Ï|

2 + “ · |ÒÏ|
2È

(3.14)

∆ F = ≠Tc

ÿ

≠æ
k

log fiTc

a1 log (1 + Á) + “k2 (3.15)

where ‘ = T ≠Tc

Tc

(reduced temperature, assumed small here for near Tc analysis).
Note: In doing the above functional integral, we didn’t employ saddle point estimation to
find free energy. This is simply because the saddle point contribution is already accounted
for in the mean field („mF = 0), while we consider only fluctuations over this mean field
(average of which is the mean field value). Hence, in fluctuation theory, one takes into
account all possible fluctuations, without extremising F .
Computing CV we have

”C+ = ≠1
V Tc

·
ˆ2F

ˆÁ2 = ≠1
V Tc

·
ˆ2

ˆÁ2 ◊

S

U≠Tc

ÿ

≠æ
k

log
fiTc

a1 log (1 + Á) + “k2

T

V (3.16)

∆ ”C+ =
ÿ

≠æ
k

a1
V

æimes
1

(1 + Á)2

C
1

a1 log (1 + Á) + “k2 + a1

(a1 log (1 + Á) + “k2)2

D

(3.17)

Here the 1st term diverges, while the second term is convergent.

For the 1st term we evaluate the integral to be

ÿ

≠æ
k

a1

(1 + Á)2 ◊
1
V

◊
1

a1 · log (1 + Á) + “k2 (3.18)

= a1

(1 + Á)2 ◊
1

2 · fi2 ◊

S

WWU
k

“
≠

Ò
a1 log (1 + Á) · tan≠1

3Ú
“

a
k

4

“1.5

T

XXV (3.19)

= tends to æ Œ, for k œ [(0, Œ)] (3.20)

The first linear term in k is divergent for k æ Œ. To avoid that, we put kmax = 1
› æ 0
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as ‘ æ 0. The validity of this ultraviolet cuto� is natural since GL works only for length-
scales larger than ›.

Therefore the 1st integral isn’t singular for |T ≠ Tc| π 1 (infact it just vanishes).
Computing the second integral we have

”C+ ≥

⁄ Œ

0
dk

k2dk

(– log (1 + Á) + “k2)2 (3.21)

∆”C = a2
1

2fi2 ·

3
fi

4

4
◊

1
Ò

– · 1÷ (1 + Á) · “3
≥

1
Ô

Á
, Á æ 0+ (3.22)

Comparing with [5], we see a similar fluctuation scaling for BCS materials as well. This
is simply because “, ‹ Ã

Ô
≠– æ 0 near Tc, hence it behaves as usual superconductor.

We confirm this by calculating the same below Tc.

3.4.3 Fluctuation Contribution for T < TC

Similar to T > TC calculation, we perform the same manipulations here, keeping in mind
to impose UV-cuto� as and when necessary.

F = aÂ2 + bÂ4

2 + T

2
ÿ

≠æ
k

A

log fiTc

a + bÂ2 + “k2 + log fiTc

3bÂ2 + a + “k2

B

(3.23)

T < Tc, aÂ2 + b = 0 (3.24)

∆ F = aÂ2 + bÂ4

2 + T

2
ÿ

≠æ
k

C

log fiTc

“k2 + log fiTc

2bÂ2 + “k2

D

(3.25)

C = 1
V Tc

·
ˆ2F

ˆÁ2 = ≠
1

2V
·

ˆ2

ˆÁ2
ÿ

≠æ
k

log fiTc

2bÂ2 + “k2 (3.26)

= 1
2V

◊
ˆ2

ˆÁ2
ÿ

≠æ
k

log fiTc

≠2aÂ2 + “k2 (3.27)

= a1
V

ÿ

≠æn

A
≠1

(1 + Á)2 ·
1

(“k2 ≠ 2a) + 1
1 + Á

·
≠1

(“k2 ≠ 2a)2 ·

3
≠2a1
1 + Á

4B

(3.28)

Now the 1st integral is divergent while the 2nd one is convergent.
Similar to T > TC case, the 1st one will give non-singular contribution. So we calculate
the 2nd term for singular behaviour

”C = a2
1

fi2

⁄ Œ

0

k2dk

(“k2 ≠ 2a)2 = a2
1

2 · fi2 ·
fi

4 ·
2

Ò
≠2a1ln (1 + Á) · “3

(3.29)

∆ ”C = 1
Ò

|Á|

, Á æ 0≠ (3.30)
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Again similar power law scaling as BCS. This confirms the observation that near Tc, this
model behaves like a BCS superconductor.

3.4.4 Ginzburg-Levanyuk No.

Specify the Ginzburg-Levanyuk no.(Gi) as the value of reduced temperature at which
mean field jump to specific heat equals the contribution due to fluctuations.
This means

∆CMean field = ∆Cfluctuations (3.31)

=∆
a2

1
bTc

= a2
1

2fi2 ·

3
fi

4

4
◊

1
Ò

– · 1÷ (1 + Gi) · “3
(3.32)

=∆ ›Á = Gi =
Û

“

–(Gi) = 8fi“2

bTC
(3.33)

This puts a practical restriction on the application of fluctuation theory beyond the
reduced temperatures set by Gi. This is because we’ve calculated the above quantities
under the assumption that fluctuations are small, which isn’t true near the critical point.
Near the critical point, interactions between fluctuations (characterized by „4 term) be-
come important and can be treated using methods of critical phenomena (using methods
of renormalization group). We’ll not delve into that, but shall present an easier alternative
approximation scheme which was found to be in excellent agreement with experiments
on Bi-Sb thin films (Grossman et al [3]).

3.5 Critical Fluctuations: HF Approximation

Following [3] to look at critical fluctuations, we use a self consistent Hartree Fock Ap-
proximation amounting to the replacement

|Œ |
4 = 2 · |Œ |

2 < |Œ |
2 > ≠ < |Œ |

2 >2 (3.34)

and then use this to determine < |Œ |
2 > self consistently. Grossman etal do this to

observe specific heat that varies monotonically and reaches the jump value predicted
from mean field theory. Proceeding the same way we see
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F =
⁄

d≠æx

S

U– |Â|
2 +

ÿ

a=±1

1
Kav2

aF

2
· |ÒÏ|

2 + — |Â|
4
T

V (3.35)

|Â (≠ær )|4 = 2 · |Â (≠ær )|2 È|Â|
2
Í ≠ È(Â)2

Í
2 (3.36)

È|Â|
2
Í = ÷ (3.37)

F =
⁄

d≠æx

S

U(a + 2—÷) · |Â (≠ær )|2 +
ÿ

a=±1
Kav2

aF |ÒÂ (≠ær )|
T

V
2

(3.38)

ÿ

a=±1
Kav2

aF = ≈ (define) (3.39)

Thus HF approximation amounts to replacing a æ a + 2÷—. Now the self consistency
becomes

÷ = È|Â|
2
Í = 1

V

ÿ

≠æ
k

kBT

a + 2—÷ + ≈k2 (3.40)

(3.41)

At T = Tc ∆ ac + 2—c÷c = 0, therefore

÷c = 1
V

ÿ

≠æ
k

kBTc

≈k2 =
⁄ d3k

(2 · fi)3 ·
kBTc

≈k2 = 1
2 · fi2 ◊

⁄ kmax

0
dk

kBTc

≈
(3.42)

(3.43)

Now we set kmax = 1
› , selecting the minimum › to get a good approximation to the

integral.
In[3], they set this to ›0 (pippard’s coherence length), however, since we’re looking at a
region where |‘| < Gi, we put the minimum › as ›Á = Gi (note that this is the fluctuation
coherence length and not the BCS coherence length). This leads to

∆ ÷c = 1
2 · fi2 ·

kBTc

≈
·

1
›Gi

(3.44)
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3.5.1 Shift of Critical Temperature

We have the new TC where ac + 2—c÷c = 0, which gives

ac = ≠2—c÷c = ≠2—c ·
1

2 · fi2 ·
kBTc

≈
·

1
›Gi

(3.45)

∆ N log
A

Tc

T 0
c

B

= ≠
—c

fi2 ·
kBTc

≈
·

1
›Gi

(3.46)

=∆ Tc = T 0
c · exp(≠—c

fi2 ·
kBTc

≈
·

1
N›Gi

) (3.47)

3.5.2 Cv in |Á| π Gi region

With F defined eqn.(3.38), we compute the free energy similarly to non-critical cases as

F = ≠Tc

ÿ

≠æ
k

log fiTc

(– + 2—÷) + “k2 (3.48)

Now proceeding similarly, we can calculate CV ≥
ˆ2F

ˆÁ2 for which we’d require knowledge
of ˆ÷

ˆÁ - This has to be calculated using eqn(3.40). A series expansion can be done in ‘

for the same. However since we know that in 3D, Gi is quite small for BCS and this
model essentially behaves like BCS near Tc, the correction due to fluctuation is small.
Therefore, we leave the computation of the same for the time being and focus on the
more interesting observable: Diamagnetic susceptibility.

3.6 Fluctuation Diamagnetism

Since fluctuation induced diamagnetism eventually leads to meissner e�ect as we re-
duce the temperature, we can expect it to be small wrt diamagnetic susceptibility of
a superconductor. However, it can be comparable or even exceed the value of diamag-
netic/paramagnetic susceptibility of a normal metal (see equation 10.58 in [5]). It can
be shown, using langevin formula for diamagnetic susceptibility, that the fluctuation cor-
rection can be of the order of pauli paramagnetism (but opposite in sign). Hence, we
expect that investigating this observable in presence of spin orbit coupling might show
an interesting response.

For calculations on BCS superconductors, the reader if referred to [5] section 10.2.4.

3.6.1 Calculation for the model hamiltonian

This section follows the idea outlined in [5] - section 10.2.4, ”GL Treatment of Fluctua-

tion Magnetization”.

23



GL free energy as derived in (2.21)

F =
⁄

d3≠ær

S

U– |Â|
2 +

ÿ

a=±1
Ka

---
1
vaF Dú

≠ 2aµB
≠æ
B

2
Â

---
2
T

V + 1
2(B̨ ≠ H̨)2 (3.49)

For weak magnetic field and non-critical fluctuations, we neglect the last term (assuming
fluctuations are small enough to allow B̨ ≥ H̨ ).
Expanding the term in the bracket we have a new form

ÿ

a=±1
Ka

1
v2

aF |DÂ|
2

≠ 2µB [a · vaF ] ≠æ
B [ÂúDúÂ + ÂDÂú] + 4µ2

BB2
|Â|
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With

D = ≠iÒ ≠ 2 ·
≠æ
eA

Rewriting the free energy we have

F =
⁄

d3≠ær

S

U

Q

a– + 4µ2
BB2 ÿ

a=±1
Ka

R

b · |Â|
2 +

Q

a
ÿ

a=±1
Kav2

aF

R

b · |DÂ|
2

≠ 2µB

Q

a
ÿ

a=±1
KaavaF

R

b ≠æ
B ·

≠æ
j

T

V

≠æ
j = ÂúDúÂ + ÂDÂú

We, for the time being, ignore the contribution of B2 to – in the 1st term for weak
field B. Also, we take the magnetic field to be along ẑ i.e. B̨ = B0ẑ. Thus free energy
is kept explicitly linear in B at the GL level.

≠æ
j ·

≠æ
B = jzBz = B0jz = B0 [Âú

· (iˆz) Â + Â (≠iˆz) Âú]

Redefining quantities, we have

a =
1
– + 4µ2

BB2 ÿ
ka

2
≥ –

“ = 2µB

ÿ

a=±1
KaavaF

” =
ÿ

Kav2
aF

F =
⁄

d3≠ær
Ë
a |Â|

2
≠ “ ·

≠æ
j ·

≠æ
B + ” · |DÂ|

2È
(3.50)
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This gives us the GL length-scale

›2 = ”

|–|
(3.51)

Comment: › æ 0 at Tæ 0 K.

We expand Â in terms of the landau levels and choose a gauge s.t. Az = 0.

Â =
ÿ

÷,k

„÷ (≠ær ) · eikz
· c÷,k

„÷ (≠ær ) = „m (x ≠ x0) exp [ikyy]

÷ = (m, ky)

This makes the free energy F [Â] as

∆ F [Â] =
ÿ

÷,k

[a + 2kB0“ + ”.2M · E (÷, k)] · |c÷,k|
2 (3.52)

where

E (÷, k) = ~Êc

5
m + 1

2

6
+ k2

2M
(3.53)

≠æ
j ·

≠æ
B æ ≠2kB0 (3.54)

where Êc = = 2eB
M . We evaluate this sum to be

Z =
⁄

D (Â) · e≠—F [Â] (3.55)

∆ F = ≠T
ÿ

÷,k

log fiT

a + 2kB0“ + ”.2M · E (÷, k) (3.56)

∆ F = ≠T
ÿ

m,ky ,k

log
fiT

a + 2kB0“ + ” · 2M ·

C

~Êc

3
m + 1

2

4
+ k2

2M

D (3.57)

∆ F = ≠T ◊
SB

Õ0

ÿ

m,k

log fiT

a + 2kB“ + ”.2M ·

C

Êc

3
m + 1

2

4
+ k2

2M

D (3.58)

This sum is divergent.
Cause of divergence is the physical inapplicability of GL theory at shortwavelength fluc-
tuations. To bypass this, we put kmax and nmax cuto�s defined by
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k2
max ≥ ›≠2

≥
a

”
≥

N ·

3
ln T

Tc

4

”
≥

N · ln (1 + Á)
”

Á = T ≠ Tc

Tc

In this model, – = N ln ( T
Tc

). For the m-cuto�, we have

mÊc ≥
k2

2M
≥

›≠2

2M

=∆ mmax ≥
›≠2

2MÊc
, Êc = 2eB

M
= 2B

M„0

≥
a

”
◊

1

2 ◊
2B

Õ0

≥
aÕ0
4B”

The sum highlighted in (3.58) should then be used to calculate the 0 field susceptibility
‰ (B̨ = 0).
Note: In what follows, a factor of 2 has been absorbed making 2e © e. However, this
doesn’t change the qualitative results, since from what follows, we can rescale e æ 2e in
the final expression to get the exact answer.

A similar expression for the conventional bcs superconductor (i.e. with “, ‹ = 0 ) was
worked out in [8]. We reformulate the same approach for this by using eq (8) highlighted
in their calculation.
This amounts to redefination as follows:

A (B, k) = a + 2kB“ + ”k2 (3.59)

= a ≠
B2“2

”
+ (K Õ)2 = AÕ(B, k) (3.60)

K Õ = k
Ô

” + B“
Ô

”
(3.61)

Note that this changes just the k-summation by a factor
Ô

”, leaving the rest of the
calculation same. With this, the approximation used in [8] eqn(9) gets modified for our
case to become

A

a ≠
B2“2

”

B

· fi

B”e
∫ 1 =∆

B2“2

”
+ ”Be

fi
π a (3.62)
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Now, proceeding similar to the same paper (i.e. [8]), the approximation produces

F =
ÿ

k

3
≠

TS

Õ0

4 ⁄ Œ

0
log fikBT

A (B, k) + 2Bet”
dt·B+2

Œÿ

n=1
(≠1)n

·

3
≠TS

2”

4 ÿ

k

(e”B)2

(nfi)2 ·
1

A (B, k)
(3.63)

Now, we simplify the second term.

2
Œÿ

n=1
(≠1)n

·

3
≠TS

2”

4 ÿ

k

(e”B)2

(nfi)2 ·
1

A (B, k) (3.64)

=
ÿ

k

2 ú

3
≠TS

2”

4
ú

≠fi2

12 ú
1

A (B, k) (3.65)

=
⁄ dk

2fi

T ”Se2

12 B2
Œ⁄

≠Œ

dk

2fi

1
A(B, k) (3.66)

= T ”Se2

12 B2
ú

fi
Ô

”

S

U 1
Ô

a
+ 1

2
B2“2

”a1.5 + ....

T

V (3.67)

where we use the integral

Œ⁄

≠Œ

dk

2fi

1
a + ”k2 + 2Bk“

= 1
Ô

”

fi
Ò

a ≠
B2“2

”

(3.68)

= fi
Ô

”

S

U 1
Ô

a
+ 1

2
B2“2

”a1.5 + ....

T

V (3.69)

where we could expand it in a power series in lieu of (3.62) i.e. in powers of B2“2

a” (since
” > 0, we can proceed with it’s use).
For the 1st term, we have In doing sum over m, the first term in eqn(??) is given by

ÿ

k

3
≠

TS

Õ0

4 ⁄ Œ

0
log fikBT

A (B, k) + 2Bet”
dt · B

=
ÿ

k

≠
TS

2”

⁄ Œ

0
log fikBT

A (B, k) + 2B”t

Õ0

·
2B

Õ0
dt”

= ≠
TS

2”

⁄ Œ

≠Œ

dk

2fi

⁄ Œ

0
log fikBT

A (B, k) + z
dz

where
A(B, k) = a + 2kB“ + ”k2

This is a divergent integral, hence we leave it as such, although later we’ll use to compute
‰. A point to note is that setting “ = 0 here will make the whole integral independent of
B, hence for ‰ calculation, it can be skipped without loss of generality (this is precisely
what happens in BCS). However, for this case, we need to retain it.

27



Collecting all terms together, we have

F = T ”Se2

12 B2
ú

fi
Ô

”

S

U 1
Ô

a
+ 1

2
B2“2

”a1.5 + ....

T

V ≠
TS

2”

⁄ Œ

≠Œ

dk

2fi

⁄ Œ

0
log fikBT

A (B, k) + z
dz (3.70)

There are some comments we can make here:

1. The same formula for BCS superconductors has the form

F = F (0)) + 1
2

V

6fi
( e

h̄c
)2T ›GLB2 (3.71)

which, when compared to the 1st term, shows that we get the same form as BCS
plus a contribution due to ASOC in form of B4 term in F (without considering the
2nd term).

2. The eqn(3.70) looks faulty, since it features 1
at

for increasing t, which near Tc,
should blow more and more strongly as a æ 0. However, the result is only valid if
B2“2

a”
π 1, which is a subset of the general condition mentioned in (3.62), hence

both B2“2

a
is always n 1.

To calculate susceptibility, we need to evaluate the 2nd term first. Proceeding, we have

≠‰ = ˆ2F2nd term

ˆB2 = ≠TS

2”

⁄ Œ

≠Œ

dk

2fi

⁄ Œ

0
dz

4k2“2

(a + 2Bk“ + ”k2 + z)2 (3.72)

= ≠TS“2

fi”

1
”1.5

Œ⁄

≠Œ

1
K Õ

≠
B“
Ô

”

22 dK Õ

K Õ2 + (a ≠
B2“2

” )
(3.73)

where KÕ :=
Ô

”k + B“
Ô

”
, KÕ Á

Ë≠
Ô

”

›
+ B“

Ô
”

,

Ô
”

›
+ B“

Ô
”

È
. Proceeding we have

= ≠TS“2

fi

1
”2.5

;
B2“2

”
fi

1
Ò

a ≠
B2“2

”

+ 2›≠1
≠ 2

Û

a ≠
B2“2

”
tan≠1

1 ›≠1
Ò

a ≠
B2“2

”

2
2 <

(3.74)

=∆ ‰ = TS“2

fi

1
”2.5

;
B2“2

”
fi

1
Ò

a ≠
B2“2

”

+ 2
Ô

”

›
+

Û

a ≠
B2“2

”
tan≠1

1 ≠
Ô

”
› + B“Ô

”Ò
a ≠

B2“2

”

2
2

(3.75)

≠

Û

a ≠
B2“2

”
tan≠1

1
Ô

”
› + B“Ô

”Ò
a ≠

B2“2

”

2
2<

(3.76)

where we employed the cuto�s for KÕ in the last integral.
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Since tan≠1 is a bounded function, we don’t get any divergence for small ’a’ from the last
two terms. To leading order of B, “ (we’re trying to look at susceptibility for small field
i.e. essentially 0 field susceptibility), the susceptibility behaves as

‰ ≥ c1 ú “2 + c2 ú
B2“4
Ô

a
+ ... (3.77)

where c1,c2 are constants. This is what we get from (3.76).

Now we can subsequently calculate ‰ from (3.70) to get a complete expression. We
notice that SOC leads to a B2 dependence of ‰net with coe�cient proportional to “2 at
the lowest order. There’s also a ‰ ≥

“2

› dependence, which might be relevant.
Calculation of the same yields

‰ = ≠T ”Se2

12 ú
fi

Ô
”

S

U2 1
Ô

a
+ 6B2“2

”a1.5 + ....

T

V + c1 ú “2 + c2 ú
B2“4
Ô

a
+ ... (3.78)

where c2 = TSB2

”3.5
1

Ò
a ≠

B2“2

”

, and c1 can similarly be read o� by from (3.76). Barring

the exact nature of constants, we see that the functional dependence of ‰ becomes non-
linear once spin orbit coupling is allowed. However, addition of such doesn’t alter the
temperature dependence of ‰ and hence it gives the same dependence as BCS in the
“ æ 0 asymptotic limit. Moreover, it should be clarified that ‰ can depend on B2 even
in absence of “ as remarked in [8]. This however, isn’t obtained under GL framework
and requires use of diagrammatic techniques.
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Chapter 4

Conclusion

In this report we’ve managed to get a brief idea of the relation between superconduc-
tivity and crystal symmetry. As we saw in chapter 2, a inversion asymmetric crystal
shows unconventional magneto-response with spiral decay in meissner state and shows
vortex bound states. Moreover, solutions worked out in the paper were non-perturbative
(employing only London approximation) and hence present this behaviour at a dominant
level. Spin orbit coupling is manifestly observed in the handedness of the spiral and NCS
superconductors feature a strong temperature dependence in their magnetic response.
Crossover to type 1 superconductivity is also expected at high temperatures, which is
definitely a beyond standard Ginzburg-Landau phenomenon.
Next we study the e�ect of thermal fluctuations in these systems. We find that while the
fluctuational specific heat features the same temperature dependence as standard BCS,
diamagnetic susceptibility has a non-linear contribution on B coming from the spin orbit
coupling strength. Along with this, we also calculate other quantities like Ginzburg-
levanyuk no. and shift of critical temperature. At this point, we rest our current line
of investigation, which was primarily to look for interesting consequences of spin-orbit
coupling at the level of Ginzburg landau framework. Our future direction involves trying
to look at topological superconductors and see if insights gained from this study might
be useful to study properties related to vortices, magneto-response etc in that domain.

This project was envisaged by my advisor Dr. Alexander Zyuzin, who helped me through-
out the course of several months with constant and sincere support. I am indebted to him
for his guidance and for allowing me to pursue my own chain of investigation, whenever I
felt the urge to do so. Also, I would also like to thank my co-guide Prof. Sumiran Pujari
for his help during this project. Discussions with him greatly motivated me to simplify
several aspects of superconductivity and revise my standings on several other topics.
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Appendix A

List of quantities

1. D = ≠iÒ ≠ 2 ·
≠æ
eA: The gauge invariant derivative

2. v2 = ≠–K+K≠ (q
a=±1 vaF )2 4µ2

BŸ2
c ·

A
2 · e

—

B3
2 = ≠–.v2

1: Arises due to zeeman

coupling to the magnetic field

3. – = N ln T

Tc
: The coe�cient in front of the GL functional for NCS superconductors.

Its sign determines the stable minima of F , hence the configuration of the order
parameter.

4. Ka = 7 ’ (3)
6 · (4fiT )2 · Na: Na is the density of states at fermi level in one of the ASOC

split band with dispersion relation as k2

2m + a · “k, a = ±1.

5. N = N+ + N≠

2 : Avg of dos at EaF of each ASOC split band

6. — = 7’ (3)
(4fiT )2 N

7. Tc = 2e“eulerÊD
e( ≠1

NV )
fi

: Transition temperature of the superconducting phase in the
model

8. — = 7 ’(3)
(4fiT )2 N

9. Ÿc =
Ò

—
2e2

1q
a=±1

Kav2
aF

: Not to be confused with GL parameter. However, near Tc,

the superconductor behaves like a material with GL parameter ŸC .

10. vaF = fermi velocity at each spin orbit split band (i.e. a = ±1 represents each of
the bands).
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