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Plan for today

• Spin-orbit coupling  

• Paper review: Non-centrosymmetric SC 

• Fluctuations in superconductor 

• Diamagnetic Susceptibility calculation



Source: PhysRevLett.92.027003 Source:http://www.vlt.phys.tohoku.ac.jp/ 
MagneticSuperconductivity.html

Lack of inversion centre

http://www.vlt.phys.tohoku.ac.jp/


Spin orbit coupling

Source: Both taken from https://tms16.sciencesconf.org/data/pages/SOC_lecture1.pdf  

Free electrons

https://tms16.sciencesconf.org/data/pages/SOC_lecture1.pdf


TR - Yes, IR - Antisymmetric

Source: https://tms16.sciencesconf.org/data/pages/SOC_lecture1.pdf  

https://tms16.sciencesconf.org/data/pages/SOC_lecture1.pdf


• Exact nature depends strongly on the  
symmetry of the crystal.

Examples:

Cubic:

D3 : HASOC :
Source: https://

tms16.sciencesconf.org/data/
pages/SOC_lecture1.pdf  

Source: arXiv:1609.05953

HASOC :

• Bulk asymmetry can also induce a  
SOC term.

https://tms16.sciencesconf.org/data/pages/SOC_lecture1.pdf
https://tms16.sciencesconf.org/data/pages/SOC_lecture1.pdf
https://tms16.sciencesconf.org/data/pages/SOC_lecture1.pdf


Paper Summary:
“Spiral Magnetic field and bound states of 

vortices in NCS” 

Albert Samoilenka, Egor Babaev - PhysRevB.
102.184517



Take the BCS hamiltonian and add a 

1. Space dependent B     :   

2. Spin orbit interaction   :

HNCS = ∑⃗
x ,α

E (−i∇ − qA) ψ†
α ( x , τ) ψα ( x , τ) − Vψ†

↑ψ†
↓ψ↓ψ↑ + ∑

α,β, ⃗x

ψα( ⃗x )†( h ⋅ σ αβ) ψβ( ⃗x )

⃗k → ⃗k − q ⃗A + − μB
⃗B ( ⃗x )

∑⃗
k ,α,β

⃗γ( ⃗k ) ⋅ ⃗σ α,β → ∑⃗
k ,α,β

⃗γ( ⃗k − q ⃗A ) ⋅ ⃗σ α,β

h = ⃗γ (−i∇ − eA) − μBB

Now derive GL functional starting from this H

V > 0



For O (cubic)/T(tetrahedral) 

Also assume that  

  

⃗γ( ⃗k ) = γ0
⃗k

μ ≫ ωD ≫ Tc

γ0kF ≫ ωD ≫ μBB

Typical Values :



Table of some known 
NCS materials. 

Source: arXiv: 
1609.05953



Given H, we compute the partition function as  

Z = ∫ D[ψ, ψ̄]e−S[ψ̄,ψ]

S = ∫
β

0
dτd ⃗x ∑

α,β=↓↑

a†
α(h ⋅ σαβ)aβ − Va†

↑a†
↓a↓a↑

h = (∂T + E − μ, h ) σαβ = (δαβ, σαβ) h = γ (−i∇ − eA ( x )) − μBB ( x )

F = ∫ d ⃗x
Δ2

V
−

T
2

Tr ln H
Z = ∫ D[Δ†, Δ]e 1

2 ln detH− ∫ d ⃗x dτ Δ†Δ
V

Now expand tr ln H in terms of delta to get F



Final result 

Fncs = ∫ d3 r [α ψ
2

+ ∑
a=±1

Ka (vaFD* − 2aμBB) ψ
2

+ β ψ
4
] +

1
2

( ⃗B − ⃗H)2

α = N ln( T
TC

) Ka ∝ ν(EaF),

Well defined functional: manifestly bounded from below

Taken from  arXiv:1609.05953

+

-



F = ∫ d r
(B − H)

2

2
+ ∑

a=±1

𝒟aΨ
2

2κc
− Ψ

2
+

Ψ
4

2

ψold =
−α
2β

ψnew 𝒟a = i∇ − ⃗A − (γ + aν) ⃗B

γ ∝ γ0, for γ0kF ≪ μ

Rescaled GL



GL equations:  

Magnetic Field configuration is given by 

∑
a

D2
aψ

2κc
− ψ + ψ |ψ |2 = 0, c . c = 0

∇ × [ ⃗B − ⃗H − ∑
a=±1

(γ + aν) ⃗J a] = ∑
a

⃗J a

⃗J a =
Re(ψ*𝒟aψ)

κc

B = Re(w) w = ηf ̂k − ̂k × ∇f ∇2f + η2 f = 0*

η = η1 + iη2 =
−γ + iχ
γ2 + χ2

, χ =
κc

2
+ ν2



Spiral Meissner Effect
GL result shows that 

f ∝ eiηx

B̃ = Bz + iBy = −
iηκc

2χ
(Hz + iHy)eiηx ∝ e−η2x+iη1x

η1 ∝ γ ( ∝ γ0) Determines handedness

λ =
1
η2

Taken from arXiv:2003.10918v1



Vortex State

Using the equations as before, we can compute structure of vortex magnetic 
field and Hc1. Work in the London limit to do this.

f =
iπ
2

ηnH(1)
0 (ηρ)

B̃ = Bz + iBθ ∝
eiηρ

ρ

⃗B (ρ, θ, z) = Re[ iπ
2

nη2(0,H(1)
1 , H(1)

0 )]

Taken from arXiv:2003.10918v1

Apple
This part was missed by previous papers.




Both taken from PhysRevB 102.184517  
 

Plot of |B| vs (x,y) in 2DPlot of B vs (x,y) for the vortex states.



Crossover to Type I

Given the coherence length and the penetration depth, we calculate the GL 
parameter 

• Near Tc,  

• As T is lowered,       increases. 

κ =
λ
ξ

=
2κc

η2
= κc

1 + 2
κc

(γ2 + ν2)

1 + 2ν2

κc

κ

γ, ν → 0, so κ = κc



Taken from PhysRevB 102.184517  
 



Now we look at energy of a vortex configuration. We find the free energy for 
the vortex configuration to be  

Fv = 2πn(nHL
c1 + H)

HL
c1 =

χ
κc

[η1tan−1(
η1

η2
) + η2ln

2e−γeuler

ξ ]

Taken from PhysRevB 102.184517  
 



Inter-vortex Interaction : Bound states

U(R) ∝ n1n2e−η2Rcos(η1R + ϕ0)

• Non-monotonic inter-vortex 


Interaction.


• Vortices can form pairs.


• Many vortex pairs


Taken from PhysRevB 102.184517  
 

Apple
This too was missed by previous works



Conclusion: Standard GL vs NCS

Property Standard GL NCS

Meissner Effect Normal Decay Spiral Decay

Vortex Magnetic Field Normal Decay Spiral Decay

Intervortex interaction Monotonic Non-Monotonic

Crossover Doesn’t generally occur Can occur



Fluctuations in 
superconductors



Example

Minimizing the free energy functional we have 

FGL = ∫ a |Ψ |2 +
b
2

|Ψ |4 +
1

4m
|∇Ψ |2

Source: arXiv: cond-mat/0109177v1 



Ψ = φmF ( = 0 for ϵ > 0) + ψ

Decompose the net field into mean field contribution (can be spatially non-uniform)


And thermal fluctuations.

F integral diverges. Reason?

F[Ψ] ≡ F[ψ] = ∫ a |ψ |2 +
b
2

|ψ |4 +
1

4m
|∇ψ |2

Source: arXiv: cond-mat/0109177v1 



Although F diverges, taking derivatives to calculate observables like specific 
heat/susceptibility etc. can converge. 

Convergent result

δC+ =
1

8π
(4mαTc)1.5

ϵ

Source: arXiv: cond-mat/0109177v1 



Fluctuational Susceptibility
Since fluctuation induced diamagnetism eventually leads to meissner effect 
as we reduce the temperature, we can expect it to be small wrt diamagnetic 
susceptibility of a superconductor. However, it can be comparable to the 
value of diamagnetic/paramagnetic susceptibility of a normal metal.

 Source: Physrev.180.527

The quantity in brackets is diamagnetic susceptibility of free electrons (landau  
susceptibility) for free electrons. 



We reconsider the free energy 

Now expanding this for a constant magnetic field along z direction we get 

F = ∫ d3 r [α ψ
2

+ ∑
a=±1

Ka (vaFD* − 2aμBB) ψ
2

] +
1
2

( ⃗B − ⃗H)2

F = ∫ d3 r [a ψ
2

− γ ⋅ j ⋅ B + δ ⋅ Dψ
2]

a = (α + 4μ2
BB2 ∑ ka) ∼ α

γ = 2μB ∑
a=±1

KaavaF

δ = ∑ Kav2
aF

ξ2 =
δ

|α |



Free energy reads 

F = − T ×
SB
Φ0 ∑

m,k

log
πT

a + 2kBγ + δ.2M ⋅ [ωc (m+
1
2 )+

k2

2M ]

F =
TδVe2

12
B2 *

π

δ [ 1

a
+

1
2

B2γ2

δa1.5
+ . . . . ]−

TS
2δ ∫

∞

−∞

dk
2π ∫

∞

0
log

πkBT
a + 2kBγ + δk2 + z

dz

2nd integral is divergent, hence not evaluated at this stage.

For small B only



χ fluc
NCS =

−TπδVe2

6
* ξGL[1 +

3B2γ2

δa1
+ . . . . ]+

TVB2

δ3.5
*

B2γ4

a
+ . . .

χ fluc
BCS = − V ×

1
6π

e2

(hc)2
TξGL

BCS result:

NCS result:

As stated in Physrev.180.527

B2γ2

δ
+

δBe
π

≪ a



Thank you







ASOC
ϵ ⃗k =

k2

2m

Special relativity yields

−μB . ⃗B =
hμBE
mc

( ⃗k × ̂z) . ⃗S = αγ( ⃗k ) . ⃗S

⃗γ( ⃗−k) = − ⃗γ( ⃗−k)Antisymmetric SOC



Given H, we compute the partition function as  

Now do mean field decoupling 

Z = ∫ D[ψ, ψ̄]e−S[ψ̄,ψ]

S = ∫
β

0
dτd ⃗x ∑

α,β=↓↑

a†
α(h ⋅ σαβ)aβ − Va†

↑a†
↓a↓a↑

h = (∂T + E − μ, h ) σαβ = (δαβ, σαβ) h = γ (−i∇ − eA ( x )) − μBB ( x )

exp [V∫ d x dτa†
↑a†

↓a↓a↑] = ∫ D [Δ, Δ†] exp( − ∫ dτd x [ Δ†Δ
V

+ Δ†a↓a↑ + Δa†
↑a†

↓])



This gives 

Integrating b we get  

Now expand F in terms of 

Z = ∫ D[Δ†, Δ]D[b]e− ∫ d ⃗x dτ(bT H
2 b+ Δ†Δ

V ) b = (a↑, a↓, a†
↓ , a†

↑ )

H0 = (0 −hT

h 0 ), Λ = (δ† 0
0 δ) δ = σ(0,0,iΔ,0)

Z = ∫ D[Δ†, Δ]e 1
2 ln detH− ∫ d ⃗x dτ Δ†Δ

V F = ∫ d ⃗x
Δ2

V
−

T
2

Tr ln H

h = h ⋅ σ

Tr log H = Tr log (1 + H−1
0 Λ) =

∞

∑
γ=1

(−1)ν+1

v
Tr [( ̂g ̂δ ̂gTδ†)]

Δ

ĥ ̂g = δ ( x − x′�) δ (τ − τ′�)



HS transformation



Boundary conditions in GL

⃗n ⋅ ∑
a

Daψ = 0

⃗n × [ ⃗B − ⃗H − χa
⃗J a] = 0



Hankel function of the 1st kind: 

For imaginary $\eta$, it reduces to Bessel function K_0

H1
0(ηρ) → const × ln(ρ)


