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Plan for today

Spin-orbit coupling
Paper review: Non-centrosymmetric SC
Fluctuations in superconductor

Diamagnetic Susceptibility calculation



Lack of inversion centre

CePt,Si - PAmm; CePt,B-type

Source:http.://www.vit.phys.tohoku.ac.jo/
MagneticSuperconductivity.html

Source: PhysRevlLett.92.027003


http://www.vlt.phys.tohoku.ac.jp/

Spin orbit coupling
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https://tms16.sciencesconf.org/data/pages/SOC_lecture1.pdf
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Paper Summary:

“Spiral Magnetic field and bound states of
vortices in NCS”

Albert Samoilenka, Egor Babaev - PhysRevB.
102.184517



Take the BCS hamiltonian and add a
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Now derive GL functional starting from this H



For O (cubic)/T(tetrahedral) L, —
y(k)=7k

Also assume that
U > wp > TC

Yokp => wp > ugB

Typical Values :



Compound Structure 7. y H ., 1/T7(T) KS C(T,H) TRSB AT)| Easoc asoc/krT.
(K) (mJ/mol K*) (T)
CePt3Si Pdmm  0.75 390 2.7 ¢, 3.2|| a L C L L 3095
LaPt3Si 0.6 11 Type P24 F F1 N F1 3868
CeRhSij [4dmm 1.05 110 ~30|e. T a 111
CelrSis 1.6 100 ~45 | ¢, 9.5 a L C,R 29
CeCoGes 0.64 32 >201le 3.1 a 163
CelrGes 1.5 80 > 10 || ¢
Ulr P2, 0.13 49 0.026
Li;Pds;B P4332 7 9 2 F R F F2 50
LioPt3B 2.7 7 5 L C F/L L2 860
Y2C3 143d 18 6.3 30 F2 R F L/F2 10 N material
LayCs 13 10.6 19 C Fl F2 33 CS materials.
K,CrgAsy P6m2 6.1 70-75 23 ||, 37L L 114 S - arXiv-
RbyCraAss 1.8 55 20 P ource. aralv.
Cs2CrzAsg 2.2 39 6.5 1609.05953
BiPd P2, 3.8 4 0.8 Fl Fl F2 153
RegZr 143m 6.75 26 12.2 Y F1
Res W 7.8 15.9 12.5 Fl N Fl
Nb.Rei-» 3.5-8.8 3-4.8 6-15 F R F1/2 Fl
Re2sTi; 0.8 111.8 10.75 Fl
Mgm+r IrlgBm_y 1:137n 2.5-5.7 52.6 0.8 Fl R Fl F1/2
Ba(Pt,Pd)Sis Idmm  2.3-2.8 4.9-5.7 0.05-0.10 Fl
La(Rh,Pt Pd.Ir)Si;3 0.7-2.7 4.4-6 Type 1/0.053 Fl N Fl 93(Rh)
Ca(Pt,Ir)Sis 2.3-36  4.0-5.8 0.15-0.27 F1 N
Sr(Ni,Pd,Pt)Sis 1.0-3.0  3.9-5.3 0.039-0.174 F1
Sr(Pd,Pt)Ges 1.0-1.5  4.0-5.0 0.03-0.05 Fl




Given H, we compute the partition function as
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Final result
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Well defined functional: manifestly bounded from below

Taken from arXiv:1609.05953



Rescaled GL
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GL equations:
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Spiral Meissner Effect

GL result shows that
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Taken from arXiv:2003.7109178v1



Vortex State

Using the equations as before, we can compute structure of vortex magnetic
field and Hc1. Work in the London limit to do this

_ )
] = sznHo (np)

This part was missed by previous papers.
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Taken from arXiv:2003.10918v1 N
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This part was missed by previous papers.
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Plot of B vs (x,y) for the vortex states. Plot of |B| vs (x,y) in 2D

Both taken from PhysRevB 102.184517



Crossover to Type |

Given the coherence length and the penetration depth, we calculate the GL
Parameter

+=(%+ 17

5 > \/1_|_2Ky2

® Near Ic, V,U —™ 0, SO0 K = K.

® As T is lowered, K increases.
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Taken from PhysRevB 102.184517



Now we look at energy of a vortex configuration. We find the free energy for

the vortex configuration to be
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Inter-vortex Interaction : Bound states

U(R) x nin,e " cos(n,;R + ¢,)

This too was
missed by previous
works

e Non-monotonic inter-vortex
Interaction.
* \ortices can form pairs.

 Many vortex pairs
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Apple
This too was missed by previous works


Conclusion: Standard GL vs NCS

Standard GL

Meissner Effect Normal Decay Spiral Decay

Vortex Magnetic Field Normal Decay Spiral Decay

Intervortex interaction Monotonic Non-Monotonic

Crossover Doesn’t generally occur Can occur




Fluctuations In
superconductors



Example

b 1
F, =Ja\T\2+—\T\4+—\VT\2
2 4dm

Minimizing the free energy tfunctional we have
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Source: arXiv: cond-mat/0109177v1



‘I’=(me(=Of0r€>O)+l//

Decompose the net field into mean field contribution (can be spatially non-uniform)

And thermal fluctuations.

1

b
FI¥] = Fly] = Ja\w\2+—\w\4+—\ww2
9 4dm

Source: arXiv: cond-mat/0109177v1
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F integral diverges. Reason?



Although F diverges, taking derivatives to calculate observables like specific
heat/susceptibility etc. can converge.

1 J*F 1 1
0C; = - ((.)7):_2 2"
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Convergent result
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=87z \/E

Source: arXiv: cond-mat/0109177v1
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Fluctuational Susceptibility

Since fluctuation induced diamagnetism eventually leads to meissner effect
as we reduce the temperature, we can expect it to be small wrt diamagnetic
susceptibility of a superconductor. However, it can be comparable to the
value ot diamagnetic/paramagnetic susceptibility of a normal metal.

2kF
X= { S }[7:(3)/1231/2 [T,/ (T—T.)]"

127%mc?
~ =10~ X[ T/ (T =T ]2,
Source: Physrev.180.527

The quantity in brackets is diamagnetic susceptibility of free electrons (landau
susceptibility) for free electrons.



We reconsider the free energy

2
p= [07 ool 3 6] (urbr 208 o | 435 -7

a==*1

Now expanding this for a constant magnetic tield along z direction we get
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Free energy reads

SB T
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For small B only

2nd integral is divergent, hence not evaluated at this stage.



NCS result:

—TrSVe? 3B%y? TVB? B?%*/*
luc )4 4
)({;CS= c *éGL[1+ +....]+ *

B“y*  6Be
+— < a
T

BCS result:
1 e~

X TE
GL
67 (he)?
As stated in Physrev.180.527

fluc _
Xges =~V



Thank you
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Given H, we compute the partition function as

Z = [D[w, e~

p
S = J drd x Z a’(h - 6 ,p)05 — Va;afalaT
0 ap=|1

n=(o+E-nR)  ay=(3p7s)  B=T(-iv-eX(3))-uB (7)

Now do mean field decoupling
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This gives
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H, = (2 —(’;T), A= (%T g) h=h-o 5 = 6(0,0,iA,0)
Integrating b we get
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HS transformation



Boundary conditions in GL




Hankel function of the 1st kind: H(}(np) — const X [n(p)

For imaginary $\eta$, it reduces to Bessel function K_0



