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•GL Theory for 2 component OP


•Microscopic Derivation: Example System of 


•Spin Polarization: Analysis
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SC States in crystals

• BCS Theory , gives rise to the gap function  
 
 
 
 
 
 
 

• Gap function   matrix in spin space

⇒bk,ss′ 
= ⟨c−k↓ck↑⟩

→ 2 × 2



• One can then classify the state as singlet or triplet based on 
parity of the wavefunction ( ) as  
 
Even Parity : 
 
 
 
 
 
Odd Parity:  
 
 
 
 
 

bk,s1s2
= ± b−k,s1s2



• For an Isotropic material, one can further expand  in 
terms of spherical harmonics  
 
 
 
 

•  In solids the orbital rotation is limited to the point group operation 
of the crystal lattice. Thus we will not be allowed to use the relative 
angular momentum l to label the basis functions.


• However, one can still use Irreducible representations of the crystal 
point group for the same expansion.  
 
 
 
where sum runs over all basis functions of the relevant irreducible 
representation.

ψ( ⃗k ), ⃗d ( ⃗k )

ψ l( ⃗k ) =
l

∑
m=−l

almYlm( ̂k) l = 0,2,4,6,8...

⃗d l( ⃗k ) =
l

∑
m=−l

⃗b lmYlm( ̂k) l = 1,3,5,7,...



• Landau Prescription: To construct GL functional, use ηm as order 
parameters in the free energy.


• As ηm transform under symmetry operations like coordinates in 
the basis of functions {ψm( ⃗k⃗)} or .


• For e.g. in  irrep, the basis functions are given by  



• Therefore the correspond OPs  transform as vectors under 
rotation along z-axis.


• The Landau free energy functional is then a power expansion in 
terms of the coefficients  (real, scalar functional and depending 
upon , T and other parameters). 

{ ⃗d m( ⃗k )}

Eu

[x
y]

η1, η2

ηm⃗A



• Example: Tetragonal crystal structure (  group)


• Character Table for  
 
 
 
 
 

• 4 one dimensional and one two-dimensional irreducible 
representations representation.


• Usual one component OP: , , GL  conv. s-wave


• Unusual 2 component OP: , 

D4h

D4h

A1g ψ = η × 1 ≡

Eg ψ(k) = ηx × kxkz + ηy × kykz



• The parameters are chosen to satisfy the symmetry condition 
and are in general material dependent.



Case of Odd Parity Bi2Se3

• Crystalline Group: D3d



• Fu et al  pointed out (based on existing NMR and specific heat 
measurements) the pairing in  is odd- parity pairing.  

• Moreover, the proposed pairing is in the two-dimensional (2D)  
representation.


• This requires a 2 component OP .


• However, this proposal has turned out mixed experimental 
results (topological).


• Idea: Examine vortex structures in this theory - can give an 
additional hint about the pairing physics.

*
CuxBi2Se3

Eu

η = (η1, η2)T



GL Functional for 2 component 
Order Parameter

•We start by considering a 2 component order parameter  and 
consider the system to be uniform along  direction  
 
 
 
 

•  (choosing units s.t )


•Simplified form emerges when written in complex basis  and 
 

 
 
 
 

⃗Δ = (Δ1, Δ2)
̂z

px,y = − i∂x,y − Ai ℏ = − e*
c

= 1

Δ± = Δ1 ± iΔ2
p± = px ± ipy

ℱ(Δ1, Δ2) = α(Δ*1 Δ1 + Δ*2 Δ2) + β1
2 [ |Δ1 |4 + |Δ2 |4 + β |Δ2

1 + Δ2
2 |2 ] + (∇ × ⃗A )2

8π
+ ∑

i=1,2, j=x,y
K1(piΔj)*(piΔj) + K2(piΔi)*(pjΔj) + K2(piΔj)*(pjΔi)

ℱ = α
2 ( |Δ+ |2 + |Δ− |2 ) + β1

8 ( |Δ+ |4 + |Δ− |4 ) + β1δβ
2 ( |Δ+ |2 |Δ− |2 ) + K12

4 ( |p+Δ+ |2 + |p−Δ− |2 )

+ K12
4 ( |p+Δ− |2 + |p−Δ+ |2 ) + 2K2

4 [(p+Δ−)*(p−Δ+) + (p−Δ+)*(p+Δ−)]



•  , 


• Stability requirement*: 



• The order parameter transforms as a 2D vector under spatial 
rotation.


• Also due to the 2 dimensional nature of the problem, makes it 
possible to have a unique perpendicular vector  , hence we 
can expect a dual theory in terms of this.

K12 = K1 + K2 δβ = 1/2 + β

β1 > 0, β > − 1, K1 > 0, 1 > C = K2
K1

> −1
3

⃗Δ⊥

*Zhitomirskii M. E. “Magnetic transitions in a superconducting UPt3”. In: Phys. Rev. Lett. 103 (5 July 2009), p. 057003.



Uniform and  solutions⃗A ≠ 0

• Uniform Solution: Drop gradient terms 
                      


• Solution: 

F = α(Δ*i Δi) + β1
2 [(Δ*i Δi)2 + β |ΔiΔi |

2 ]

⃗Δ = Δ∞eiχ(x) [ cos(θ(x))
eiψ(x)sin(θ(x))]

      Case 1:   β > 0        Case 2:   −1 < β < 0

⃗Δ = Δ∞eiχ(x) [ 1
±i]

Δ2
∞ = −α

β1

⃗Δ = Δ∞eiχ [cos(θ)
sin(θ)]

Δ2
∞ = −α

β1(1 + β)
Relevant Solution for our analysis



Vortex States 

• Consider the solution for case 2:  


• 2 dofs = Orientation (  ) and phase (  )


• A phase vortex (PV) of the usual s-wave nature involves winding of the 
 by 2π around a loop. However, in this case, we can respect single-

valuedness of  by having both  wind by π in a loop i.e 

• Generically, , where  denote winding #.  

Shifting to chiral basis (  ) we get 
 
 

⃗Δ = Δ∞eiχ [cos(θ)
sin(θ)]

θ χ

χ
Δ χ, θ

χ = np
ϕ
2 , θ = θ∞ + n0ϕ

2 (np, no)
Δ±

χ ∼ ϕ/2, θ ∼ ϕ/2

(Δ+, Δ−) = Δ∞( exp(i
np + no

2 ϕ + i
θ∞
2 ), exp(i

np − n0

2 ϕ − i
θ∞
2 ) )

∝ (ei±ϕ,1) or (1,e±iϕ) → 1 PV in constant background of another



• Chiral basis reps: Allows vortex addition (  ) 

•  screened at long distances due to the meissner effect  
gradient energy is localised around the PV and remains finite. 


• orientation gradient,  remains unscreened (no coupling 
to   or anything) 
  energy cost associated diverges with system size. 


• For  system, HQV then cannot exist independently. Solution?  
 
 
 
Have a pair of HQV with opposite orientation windings 

np, no

∇χ ⟶
⟹

∇θ ⟶⃗A
⟹

∞

(1, ± 1)

(±1,1) + (±1, − 1) = (±2,0)

⇓
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• Opp wounded HQV pair separation  

χ = ϕ1 + ϕ2
2 + …

θ = θ∞ + ϕ1 − ϕ2
2 + … → θ∞



HQV Pair: Stability Analysis

• Depending on the phenomenological parameters, stability of 
vortices is decided


• Vortices -> at long distances, have attractive forces.


•  At short distance -> vortices can collapse provided interaction 
energy of vortices don’t reduce the   below .


• However, numerically, a stable bound pair of vortices have been 
observed in PRL119, 167001.  
 

FHQV pair FPV



Microscopics

•Hamiltonian of the system with SOC is given by  
 

 

 

 
 

Inplane and out of plane components of fermi velocity  
Pauli matrices corresponding to spin  
Pauli matrices corresponding to orbitals dof (1,2)  

 
 

H = ∫ d3 ⃗rΨ( ⃗r )†H( ⃗r )Ψ( ⃗r )

H( ⃗r ) = vτz[ ⃗σ × (−i ⃗∇ − e
c

⃗A )]] ⋅ ̂z + vzτy( − i∇z −
eAz

c ) + mτx

v, vz ⇒
⃗σ ⇒
⃗τ ⇒

Ψ( ⃗r ) = (Ψ↑,1( ⃗r ), Ψ↓,1( ⃗r ), Ψ↑,2( ⃗r ), Ψ↓,2( ⃗r ))
E± = v2p2

⊥ + v2
z p2

z + m2



BCS Pairing 

• S-wave channel  -triplet interorbital pairing


• Define   
 inter-orbital pairings.


• We pick the nambu basis as  
 
 
 
 

where  is given by  

Δσσ′ ( ⃗r ) = λ⟨Ψσ2( ⃗r )Ψσ′ 1( ⃗r )⟩
Δσσ′ →

Φ† = (Ψ†, ΨT( ⃗r )(−iσy))

ℋBCS ℋBCS( ⃗r ) = [ H( ⃗r ) Δ( ⃗r )
Δ†( ⃗r ) −σyH*( ⃗r )σy]

Hint = − λ∑
σ,σ′ 

∫ d3 ⃗rΨ†
σ1Ψ

†
σ′ 2Ψσ′ 2Ψσ1

Hbcs = ∫ d3 ⃗rΦ†( ⃗r )ℋBCS( ⃗r )( ⃗r )Φ( ⃗r ) + ∫ d3 ⃗r[∑
|Δσσ′ ( ⃗r ) |2

λ ]



• Pairing potential :   
 
   where         
 
 

• Now derive GL functional for the case of . As before, we 
shift to chiral basis  to get 
 
 
 
 

• Same as the phenomenological expression, upto rescaling!

Δ( ⃗r ) = ⃗σ ⋅ ⃗Δ( ⃗r )τy

⃗Δ( ⃗r ) = (Δx( ⃗r ), Δy( ⃗r ), Δz( ⃗r ))

(Δx, Δy,0)
Δ± = Δx ± iΔy

Δx( ⃗r ) = − i
Δ↑↑ − Δ↓↓

2
Δy( ⃗r ) = − 1

2 (Δ↑↑ + Δ↓↓) Δz( ⃗r ) = 1
2 (Δ↑↓ + Δ↓↑)

F = ∑
s=± {− |Δs |2 + |DxΔs |2 + |DyΔs |2 +βz |DzΔs |2 + |Δs |4

2 + γ
2 |Δs |2 |Δ−s |2

+β⊥(D−sΔs)*DsΔ−s}



Spin Polarization: Calculation

• We now change gears and focus on Spin polarization.


• In order to calculate quasiparticle spin polarization, use G.Func 
 
 
 
 
 
trace taken over spin and layer dof. 
where now we solve for the coupled equations for G.func evolution:  
 
 
 
 
where 


• Result:     , C   indpt constant 

Fk↑ (t) = − ⟨>c−k↑ck↓⟩

⃗S ( ⃗r ) = C ⋅ i ⃗Δ( ⃗r ) × ⃗Δ*( ⃗r ) ≡ ⃗r



HQV Pair Spin Polarization

• Given that we’ve a pair of HQV as potential stable state, we now 
deduce the spin polarization in this situation.


• For Single HQV, 


• For a two component OP,  ,  
 

• Specialize for HQV pair: Away from the cores, 
.


• However, this can change in case  is possible, 
which is the case for near core areas. 

Δ = (Δ1( ⃗r ), Δ2( ⃗r ))T

|Δ+ | = |Δ− |⇒
S( ⃗r ) = 0

|Δ+ | ≠ |Δ− |

S( ⃗r ) = iC(Δ*1 Δ2 − Δ*2 Δ1) ∼ i(Δ2
+ − Δ2

−)



• Let’s take the case that the vortices are a pair of half quantum 
vortices separated by . (cite the numerical observation by 
zyuzin etal)


• From phenom model, we set the form as 
 

 
where  and . 


•  
 
 
 
 
 

r12 < λ

(Δ+, Δ−) = Δ∞( ei(ϕ1+θ∞) f(r1) , f(r2) ei(ϕ2−θ∞) )

f(r → 0) → 0 f(r → ξ+) → 1
⃗S ( ⃗r ) = const × ( f(r1)2 − f(r2)2 )

f(r) ∼ tanh( r
ξ

)



• Sketch of Spin polarization near the vortices 

Distribution 

Outside 
Inside 



That’s all I had to say. 
Thank you!


