

Non-Centrosymmetric Superconductors: Response and Fluctuations

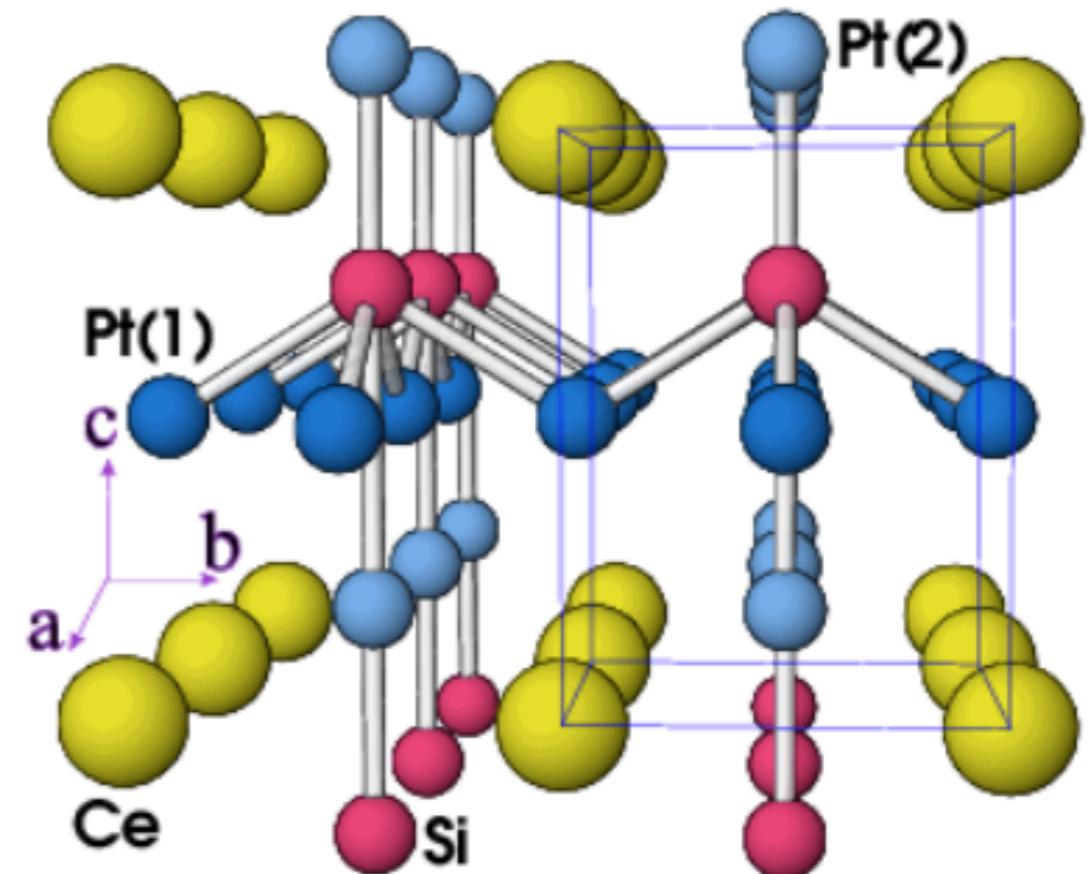
Guru Kalyan Jayasingh

Plan

- ▶ Non-Centrosymmetric Superconductors (NCS)
- ▶ Novel EM response
- ▶ Fluctuations

NCS

- ▶ Lack of an inversion center.
- ▶ Large class: weakly correlated, strongly correlated, two-dimensional materials, and topological superconductors.
- ▶ Unusual pairing phase and non-trivial transport properties.
- ▶ Lack of inversion allows for singlet-triplet mixing.



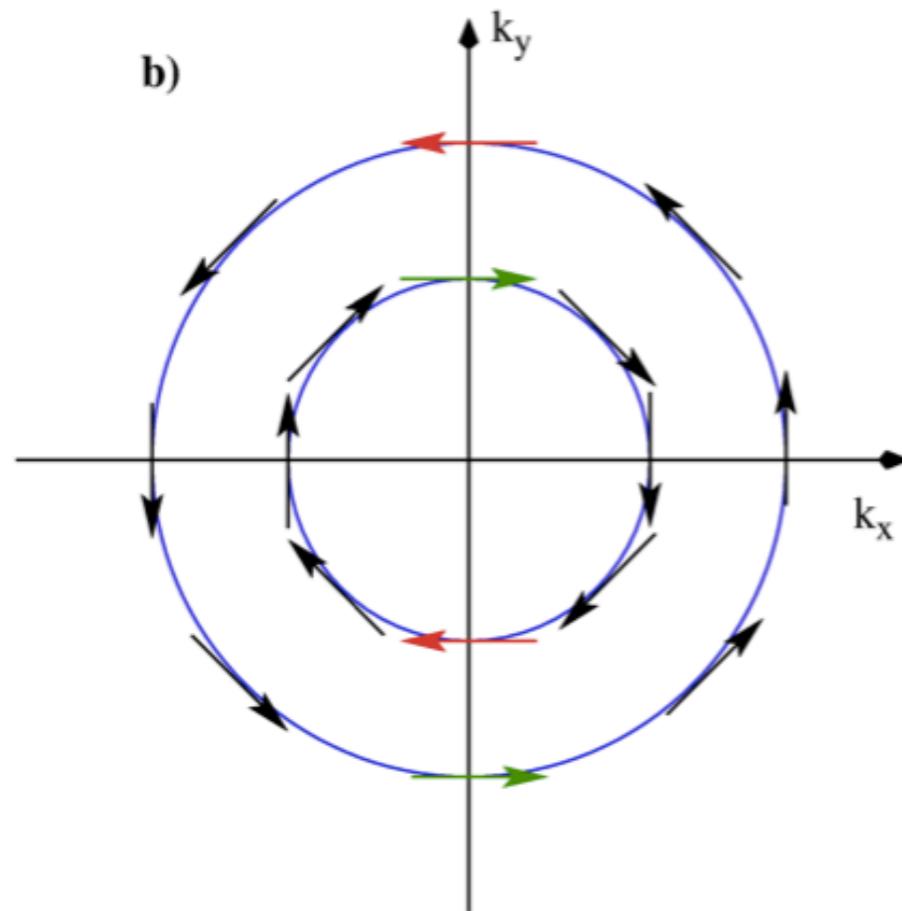
Source: *PhysRevLett.92.027003*

Spin-Orbit Coupling

- Bulk asymmetry induces a Anti-symmetric Spin Orbit Coupling (ASOC)

$$H(k) = \frac{k^2}{2m} + \vec{\gamma}(\vec{k}) \cdot \vec{\sigma} \quad \gamma(-\vec{k}) = -\gamma(\vec{k})$$

- Exact nature depends strongly on the symmetry of the crystal.



Examples:

Cubic: $H_{ASOC} : \alpha_{xx}(k_x\sigma_x + k_y\sigma_y + k_z\sigma_z)$

D_3 : $H_{ASOC} : \alpha_{xx}(k_x\sigma_x + k_y\sigma_y) + \alpha_{zz}k_z\sigma_z$

Source: arXiv:1609.05953

Model

- BCS model with spin orbit coupling term

$$H = \sum_{\vec{x}, \sigma} a_{\sigma}^{\dagger}(x) H(-i\nabla - e\vec{A}) a_{\sigma}(x) - V a_{\uparrow}^{\dagger} a_{\downarrow}^{\dagger} a_{\downarrow} a_{\uparrow} + \sum_{\vec{x}, \alpha, \beta} a_{\alpha}^{\dagger} \left[(\vec{\gamma}(-i\nabla - e\vec{A}) - \mu_B \vec{B}) \cdot \vec{\sigma}_{\alpha\beta} \right] a_{\beta}$$

Samoilenka, Babaev

Ref: PRB 102, 184517 (2020)

- $\vec{\gamma}(\vec{k}) = \gamma_0 \vec{k}$ (cubic O, Li_2Pt_3B)
- Goal: Focus on EM response, Construct GL

$$Z = \int D[a^{\dagger}, a] e^{-S} \xrightarrow{\text{Mean field}} F[\Delta] = -\frac{1}{\beta} \ln Z$$

$$S = \int_0^{\beta} d\tau d\vec{x} \sum_{\alpha, \beta=\downarrow\uparrow} a_{\alpha}^{\dagger} (\mathbf{h} \cdot \boldsymbol{\sigma}_{\alpha\beta}) a_{\beta} - V a_{\uparrow}^{\dagger} a_{\downarrow}^{\dagger} a_{\downarrow} a_{\uparrow}$$

$$\mathbf{h} = (\partial_{\tau} + H - \mu, \vec{h}), \boldsymbol{\sigma}_{\alpha\beta} = (\delta_{\alpha\beta}, \vec{\sigma}_{\alpha\beta}) \text{ and } \vec{h} = \vec{\gamma} - \mu_B \vec{B}$$

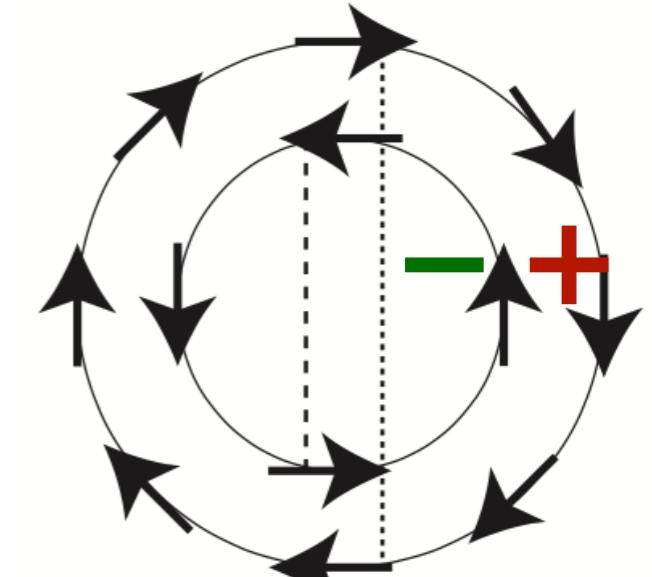
$$F = \int d\vec{r} [\alpha |\Delta|^2 + \sum_{a=\pm 1} K_a |(\nu_{aF} D^* - 2a\mu_B \vec{B}) \cdot \Delta|^2 + \beta |\Delta|^4] + \frac{1}{2} B^2$$

$$\alpha = N \ln \frac{T}{T_c} \quad T_c = 2e^{\gamma_{euler}} \cdot \omega_D \frac{e^{-\frac{1}{NV}}}{\pi} \quad K_a \sim N_a(\epsilon_F) \quad N = \frac{N_+ + N_-}{2}$$

$$F_{rescaled} = \int d\vec{r} \left[\frac{B^2}{2} + \sum_{a=\pm 1} \frac{|\mathcal{D}_a \psi|^2}{2\kappa_c} - |\psi|^2 + \frac{|\psi|^4}{2} \right]$$

$$\mathcal{D}_a = i\nabla - \vec{A} - (\gamma + a\nu) \vec{B} \quad \gamma \propto \gamma_0 \quad \nu \propto \mu_B$$

- Adds $\vec{J} \cdot \vec{B}$ term, generic feature of NCS



$$\sum_a \frac{\mathcal{D}_a^2 \psi}{2\kappa_c} - \psi + \psi |\psi|^2 = 0 \quad \nabla \times [\vec{B} - \sum_a (\gamma + a\nu) \vec{J}_a] = \sum_a \vec{J}_a$$

$$\vec{J}_a = \frac{Re(\psi^* \mathcal{D}_a \psi)}{\kappa_c}$$

Meissner Effect

- Simplify GL equations: Take London limit ($|\psi|^2 \text{ const}$)

The diagram illustrates the simplification of the Ginzburg-Landau (GL) equations for different theories. At the top, a blue box contains the full GL equation: $\nabla \times (\chi^2 \vec{B} + \gamma \vec{j}) + \vec{j} = 0$ and $\vec{j} = \nabla \phi + \vec{A} + \gamma \vec{B}$. Below this, the text "NCS" is centered. Two arrows point from this box to two separate boxes. The left box, outlined in green and labeled "EM", contains the equation $\frac{1}{4\pi} \nabla \times (\vec{B} - 4\pi \vec{M}) = \vec{j}$. The right box, outlined in red and labeled "BCS", contains the equation $\vec{j} = \nabla \phi + \vec{A}$ and $\nabla \times \vec{B} + \vec{j} = 0$.

$$\nabla \times (\chi^2 \vec{B} + \gamma \vec{j}) + \vec{j} = 0 \quad \vec{j} = \nabla \phi + \vec{A} + \gamma \vec{B}$$

NCS

$$\frac{1}{4\pi} \nabla \times (\vec{B} - 4\pi \vec{M}) = \vec{j}$$

EM

$$\vec{j} = \nabla \phi + \vec{A}$$
$$\nabla \times \vec{B} + \vec{j} = 0$$

BCS

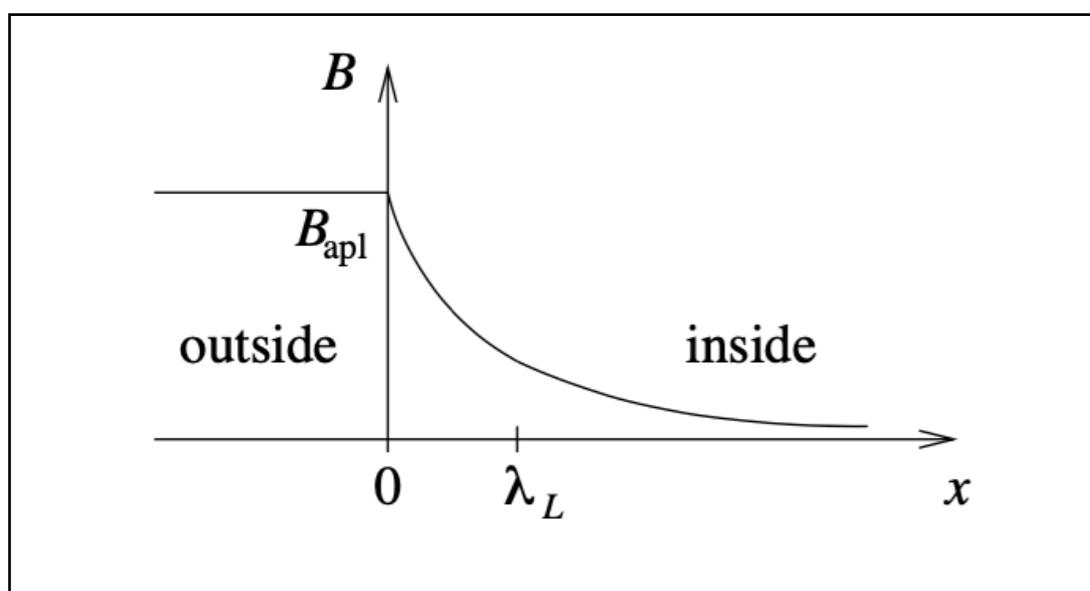
- Current induced magnetisation
- \vec{B} contributes to current itself \implies new currents now allowed
- Meissner effect modifies: a spiral decay

$$\nabla^2 \vec{B} = \frac{1}{\lambda^2} \vec{B} \implies B \sim e^{-x/\lambda}$$

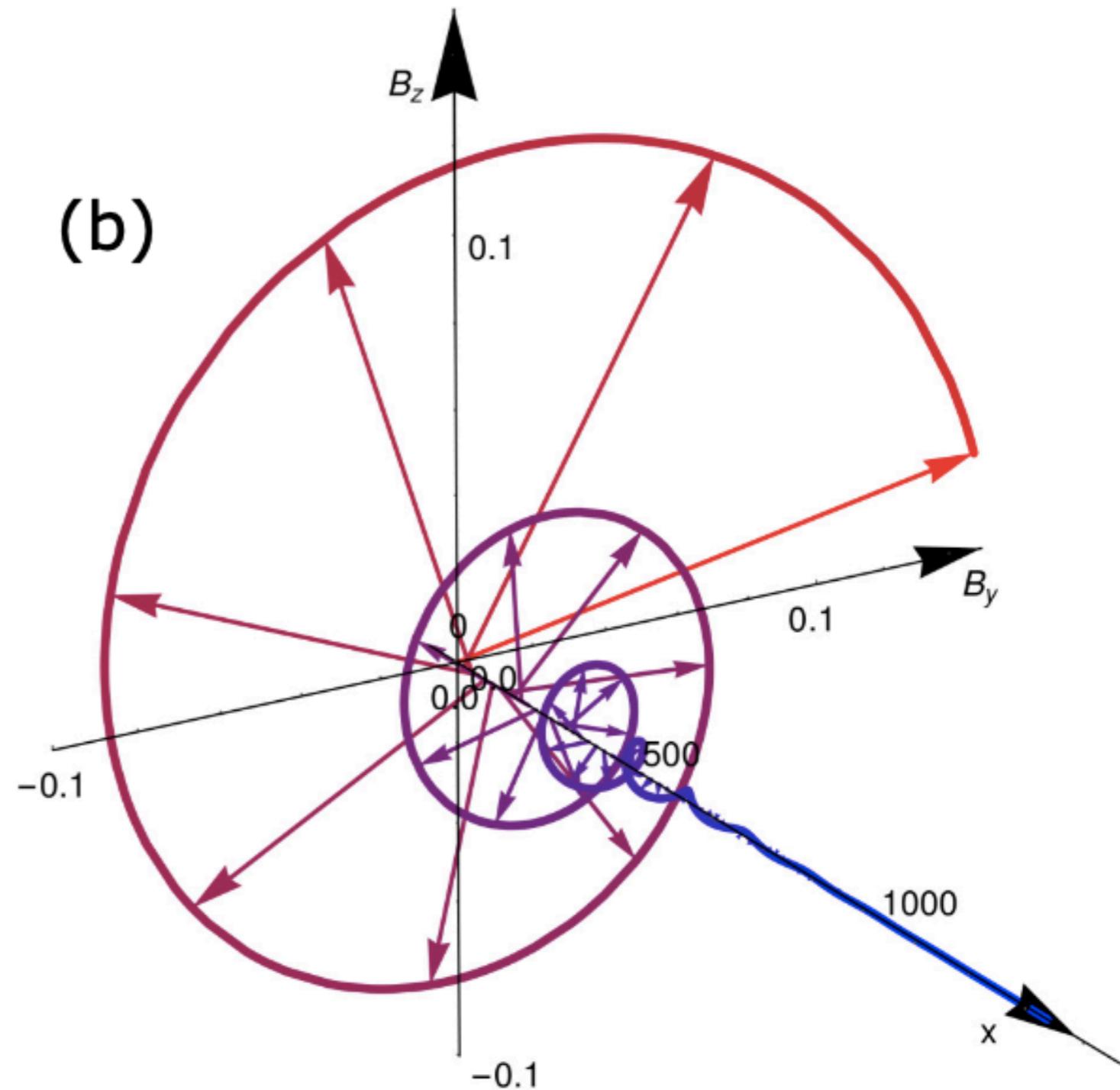
$$\tilde{B} = B_z + iB_y = -\frac{i\eta\kappa_c}{2\tilde{\eta}_2} \tilde{H} e^{i\eta x} \propto e^{-\eta_2 x + i\eta_1 x}$$

- $B_z + iB_y \propto e^{-\eta_2 x + i\eta_1 x}$

where $\eta_1 \propto \gamma$ ($\propto \gamma_0$) controls handedness and period of rotation of the spiral.

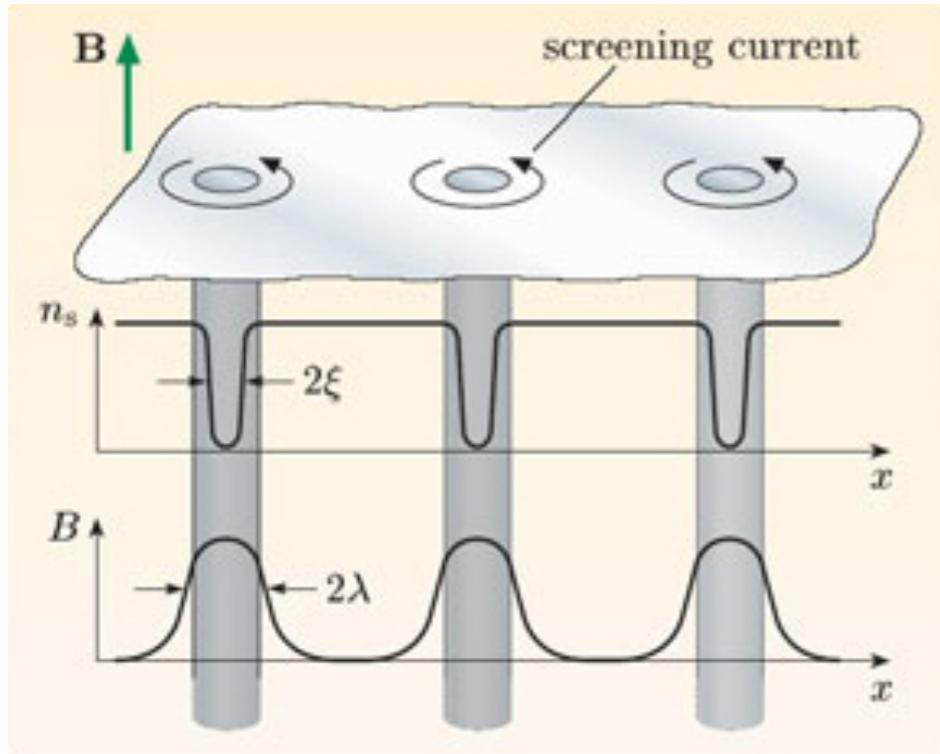


Usual Meissner Response



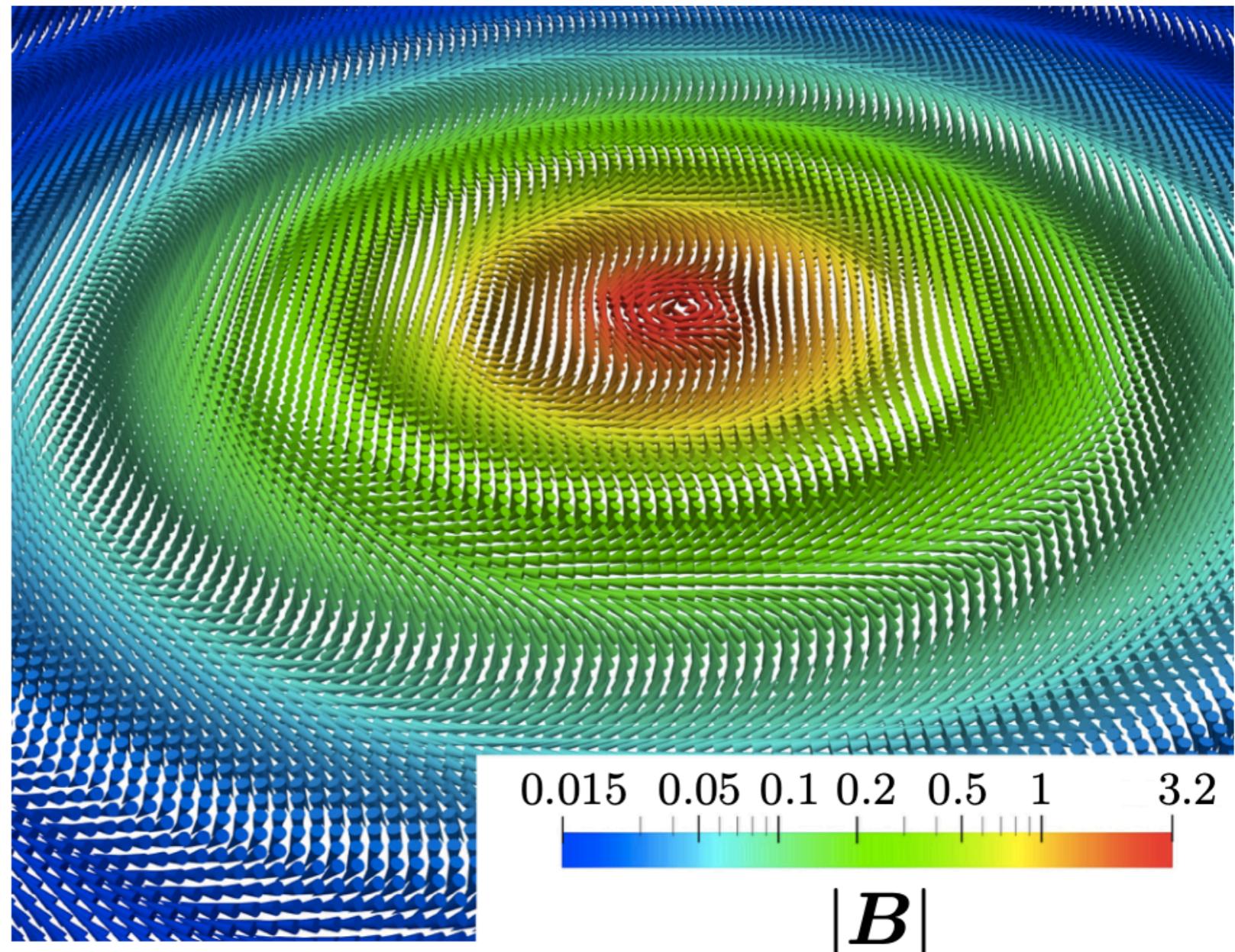
Meissner effect in NCS
Ref: PRB 102, 184517 (2020)

Vortex States



BCS

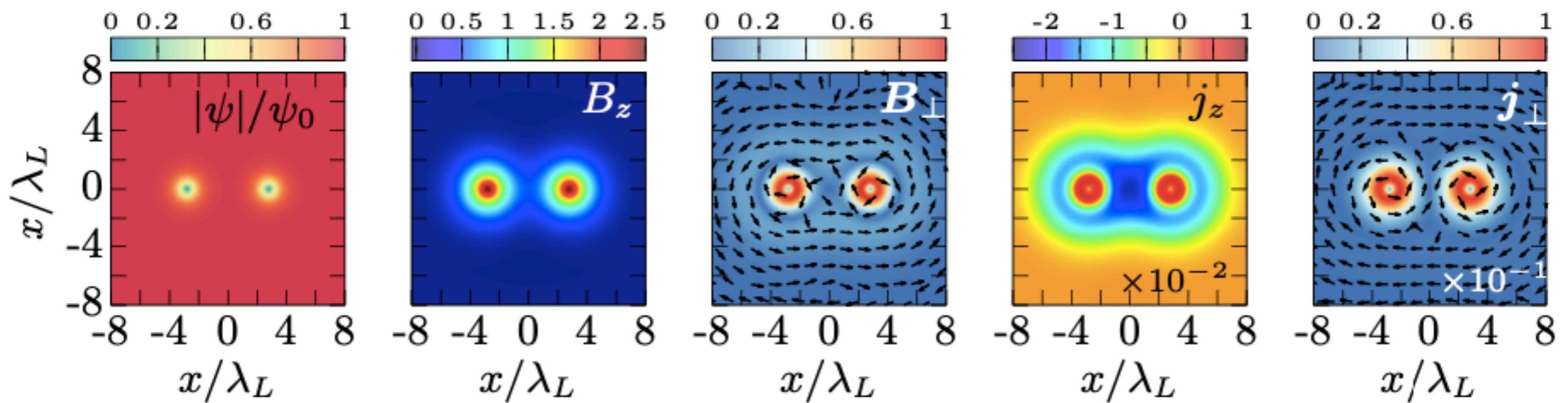
Fig Ref: The Open University



Magnetic field profile around a vortex in NCS.
Ref: Phys. Rev. B 102, 184516

Inter-vortex interaction

- ▶ Inter-vortex interaction is non-monotonic with several minimas
⇒ vortices can form bound states for these distances.
- ▶ This can be understood due to competition between current-current interaction in transverse direction vs longitudinal direction.



Physical reason

- Can be traced to $\vec{J} \cdot \vec{B}$ coupling

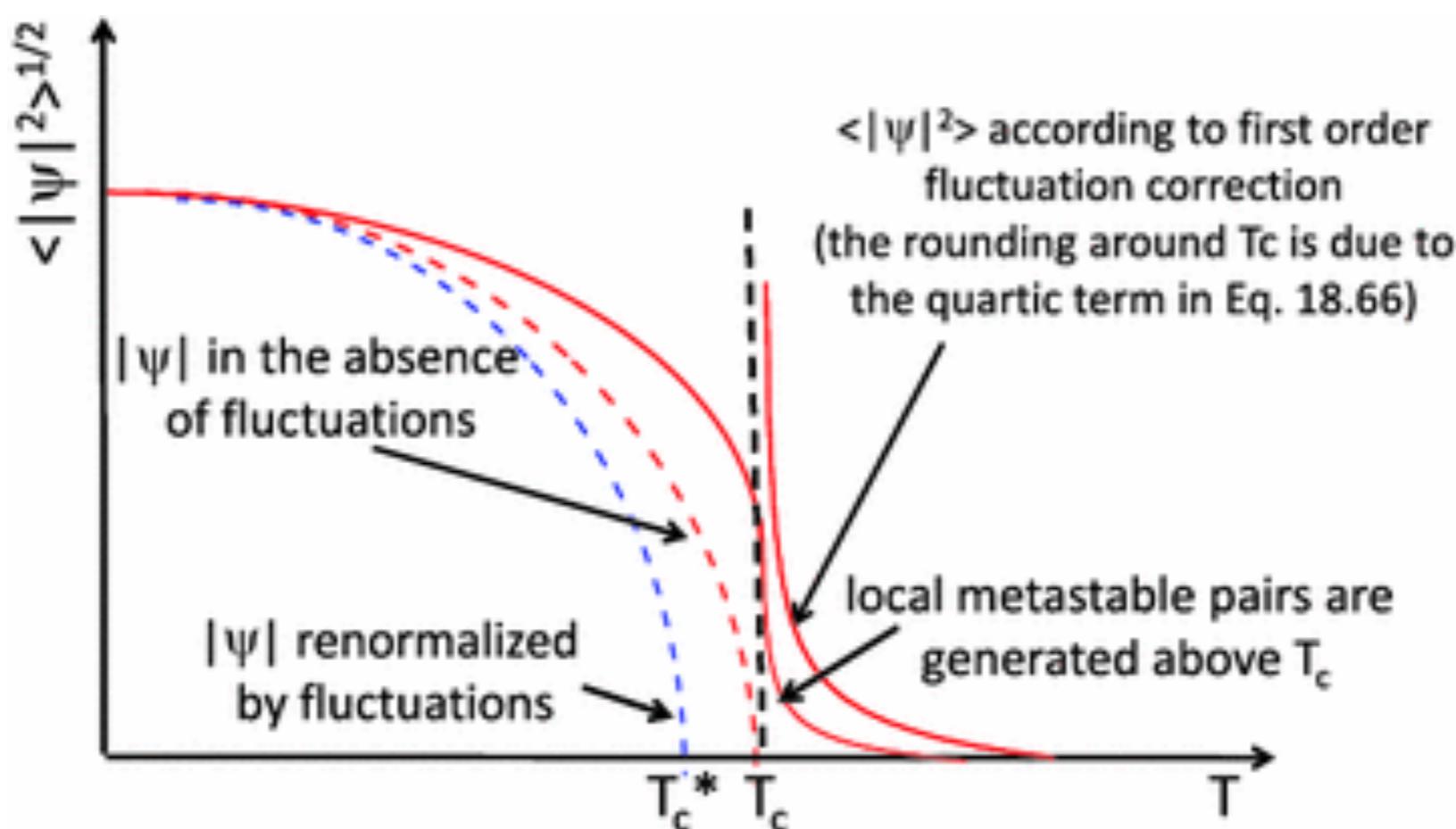
$$H(k) = \frac{k^2}{2m} + \vec{\gamma}(\vec{k}) \cdot \vec{\sigma} + \mu_B \vec{B} \cdot \vec{\sigma}$$
$$\Rightarrow \epsilon_{\pm} \simeq k^2/2m \pm \gamma_0 |k| + \hat{\gamma} \cdot \vec{B}$$
$$\hat{\gamma}(\vec{k}) = (k_x, k_y, k_z) / |k|$$

- Apply $B_x \Rightarrow$ linear term in k_x , band centre shifts along k_x
- Energetically favourable to form Cooper pairs through the new center of the band as opposed to pairing through the Γ point.
- $|\vec{k}, +\rangle + |\vec{-k} + \vec{q}, +\rangle \rightarrow \langle a_k a_{-k+q} \rangle \neq 0 \rightarrow \Delta e^{i2\vec{q} \cdot \vec{r}}$
- spatially inhomogeneous order parameter \sim associated with a current carrying state.

- ▶ ASOC, couples \vec{j} with \vec{B} , allows for additional longitudinal current in parallel to \vec{B} .
- ▶ Interesting properties: spiral Meissner effect, spiralling vortex structure, and vortex bound states.
- ▶ It is then reasonable to ask : What other properties does SOC influence?

Fluctuations

- GL theory → “mean field description”, not universally applicable.
- Superconducting fluctuations above T_c → precursor effects of the SC in normal phase.
- Observables: σ, C_V, χ , etc. may increase considerably in the vicinity of the transition temperature.



Fluctuational Susceptibility

- ▶ To explore ASOC's influence, it's fertile to look at fluctuational contributions to magnetic susceptibility, χ_{fluc} .
- ▶ Since fluctuation induced diamagnetism eventually leads to meissner effect as we reduce the temperature, we can expect it to be small wrt diamagnetic susceptibility of a superconductor.
- ▶ However, it can be comparable to the value of diamagnetic/ paramagnetic susceptibility of a normal metal.
- ▶ For a clean 3d superconductors, $\chi_{fluc}(T \gg T_C) \sim -\chi_P$, Pauli-paramagnetism.

Calculations

- Take Free energy

$$F = \int d\vec{r} [\alpha |\Delta|^2 + \sum_{a=\pm 1} K_a |(\nu_{aF} D^* - 2a\mu_B \vec{B}) \cdot \Delta|^2 + \beta |\Delta|^4]$$

- Specialise to $T > T_c$ and with weak fluctuations, one gets:

$$F = \frac{Ve^2}{12} B^2 \left[\xi + \frac{1}{2} \frac{B^2 \gamma^2}{\xi \alpha^2} + \dots \right] - \frac{TV}{2\xi \alpha^2} \int_{-\infty}^{\infty} \frac{dk}{2\pi} \int_0^{\infty} \log \frac{\pi k_B T}{A(B, k) + z} dz$$

$$\chi = - \frac{\partial^2 F}{\partial B^2}$$

Result

- ▶ NCS result:-

$$\chi = \frac{-TVe^2}{6} \left[\xi + \frac{6B^2\gamma^2}{\xi\alpha^{1.5}} + \dots \right]$$

At low field

- ▶ BCS result:-

$$\chi_{BCS}^{fluc} = -V \times \frac{1}{6\pi} \frac{e^2}{(hc)^2} T \xi_{GL}$$

As stated in Physrev.180.527

- ▶ Corrections due to quartic terms, T_c modification etc needs to be taken into account.
- ▶ Non-linear response of \vec{B} has been observed to affect resistivity in NCS systems, asymmetric response (Wakatsuki et al, Sci. Adv., 6, 13, (2020))

Summary

- ▶ Inversion breaking can lead to novel EM response in SCs.
- ▶ Coupling between \vec{j} and \vec{B} is a consequence of ASOC.
- ▶ Fluctuations feature ASOC's effect → can contribute to observables, expt relevant.

Thank you for your patience!

Although F diverges, taking derivatives to calculate observables like specific heat/susceptibility etc. can converge.

$$\delta C_+ = -\frac{1}{VT_c} \left(\frac{\partial^2 F}{\partial \epsilon^2} \right) = \frac{1}{V} \sum_k \frac{1}{\left(\epsilon + \frac{\mathbf{k}^2}{4m\alpha T_c} \right)^2}.$$

Convergent result

$$\delta C_+ = \frac{1}{8\pi} \frac{(4m\alpha T_c)^{1.5}}{\sqrt{\epsilon}}$$

Source: arXiv: cond-mat/0109177v1

Example

$$F_{GL} = \int a |\Psi|^2 + \frac{b}{2} |\Psi|^4 + \frac{1}{4m} |\nabla \Psi|^2$$

Minimizing the free energy functional we have

$$|\tilde{\Psi}|^2 = \begin{cases} -\alpha T_c \epsilon / b, & \epsilon < 0 \\ 0, & \epsilon > 0 \end{cases}$$

$$F = (\mathcal{F}[\Psi])_{\min} = \mathcal{F}[\tilde{\Psi}] = \begin{cases} F_N - \frac{\alpha^2 T_c^2 \epsilon^2}{2b} V, & \epsilon < 0 \\ F_N, & \epsilon > 0 \end{cases}$$

Source: arXiv: cond-mat/0109177v1

$$\Psi = \varphi_{mF} (= 0 \text{ for } \epsilon > 0) + \psi$$

Decompose the net field into mean field contribution (can be spatially non-uniform)

And thermal fluctuations.

$$F[\Psi] \equiv F[\psi] = \int a |\psi|^2 + \frac{b}{2} |\psi|^4 + \frac{1}{4m} |\nabla \psi|^2$$

$$F[\Psi_{\mathbf{k}}] = F_N + \sum_{\mathbf{k}} \left[a + \frac{\mathbf{k}^2}{4m} \right] |\Psi_{\mathbf{k}}|^2$$

Source: arXiv: cond-mat/0109177v1

$$Z = \prod_{\mathbf{k}} \int d^2 \Psi_{\mathbf{k}} \exp \left\{ -\alpha \left(\epsilon + \frac{\mathbf{k}^2}{4m\alpha T_c} \right) |\Psi_{\mathbf{k}}|^2 \right\} \quad F(\epsilon > 0) = -T \ln Z = -T \sum_{\mathbf{k}} \ln \frac{\pi}{\alpha \left(\epsilon + \frac{\mathbf{k}^2}{4m\alpha T_c} \right)}.$$

$$\delta C_+ = \frac{1}{8\pi} \frac{(4m\alpha T_c)^{1.5}}{\sqrt{\epsilon}}$$

Review slides

ASOC form for different symmetries

Point Group	Representation	$ \uparrow\rangle$	$\gamma(\mathbf{k}) \cdot \vec{\sigma}$
C_1	Γ_2	$ 1/2, 1/2\rangle$	$\sum_{i,j=x,y,z} a_{i,j} k_i \sigma_j$
C_2	$\Gamma_3 \oplus \Gamma_4$	$ 1/2, 1/2\rangle$	$\alpha_{zz} k_z \sigma_z + \alpha_{xx} k_x \sigma_x + \alpha_{yy} k_y \sigma_y + \alpha_{xy} k_x \sigma_y + \alpha_{yx} k_y \sigma_x$
C_s	$\Gamma_3 \oplus \Gamma_4$	$ 1/2, 1/2\rangle$	$\alpha_{xz} k_x \sigma_z + \alpha_{yz} k_y \sigma_z + \alpha_{zx} k_z \sigma_x + \alpha_{zy} k_z \sigma_y$
D_2	Γ_5	$ 1/2, 1/2\rangle$	$\alpha_{xx} k_x \sigma_x + \alpha_{yy} k_y \sigma_y + \alpha_{zz} k_z \sigma_z$
C_{2v}	Γ_5	$ 1/2, 1/2\rangle$	$\alpha_{xy} k_x \sigma_y + \alpha_{yx} k_y \sigma_x + \alpha_3 k_x k_y k_z \sigma_z$
C_4	$\Gamma_5 \oplus \Gamma_6$	$ 1/2, 1/2\rangle$	$\alpha_{xx} (k_x \sigma_x + k_y \sigma_y) + \alpha_{xy} (k_x \sigma_y - k_y \sigma_x) + \alpha_{zz} k_z \sigma_z$
	$\Gamma_7 \oplus \Gamma_8$	$ 3/2, 3/2\rangle$	$\alpha_{xx} (k_x \sigma_x + k_y \sigma_y) + \alpha_{xy} (k_x \sigma_y - k_y \sigma_x) + \alpha_{zz} k_z \sigma_z$
S_4	$\Gamma_5 \oplus \Gamma_6$	$ 1/2, 1/2\rangle$	$\alpha_{xx} (k_x \sigma_x + k_y \sigma_y) + \alpha_{xy} (k_x \sigma_y - k_y \sigma_x) + \beta_1 k_z (k_x^2 - k_y^2) \sigma_z + \beta_2 k_z k_x k_y \sigma_z$
	$\Gamma_7 \oplus \Gamma_8$	$ 3/2, 3/2\rangle$	$\alpha_{xx} (k_x \sigma_x + k_y \sigma_y) + \alpha_{xy} (k_x \sigma_y - k_y \sigma_x) + \beta_1 k_z (k_x^2 - k_y^2) \sigma_z + \beta_2 k_z k_x k_y \sigma_z$
D_4	Γ_6	$ 1/2, 1/2\rangle$	$\alpha_{xx} (k_x \sigma_x + k_y \sigma_y) + \alpha_{zz} k_z \sigma_z$
	Γ_7	$(x^2 - y^2) 1/2, 1/2\rangle$	$\alpha_{xx} (k_x \sigma_x + k_y \sigma_y) + \alpha_{zz} k_z \sigma_z$
C_{4v}	Γ_6	$ 1/2, 1/2\rangle$	$\alpha_{xy} (k_x \sigma_y - k_y \sigma_x) + \beta k_z k_x k_y (k_x^2 - k_y^2) \sigma_z$
	Γ_7	$(x^2 - y^2) 1/2, 1/2\rangle$	$\alpha_{xy} (k_x \sigma_y - k_y \sigma_x) + \beta k_z k_x k_y (k_x^2 - k_y^2) \sigma_z$
D_{2d}	Γ_6	$ 1/2, 1/2\rangle$	$\alpha_{xx} (k_x \sigma_x - k_y \sigma_y) + \beta k_z (k_x^2 - k_y^2) \sigma_z$
	Γ_7	$(x^2 - y^2) 1/2, 1/2\rangle$	$\alpha_{xx} (k_x \sigma_x - k_y \sigma_y) + \beta k_z (k_x^2 - k_y^2) \sigma_z$
C_3	$\Gamma_4 \oplus \Gamma_5$	$ 1/2, 1/2\rangle$	$\alpha_{xx} (k_x \sigma_x + k_y \sigma_y) + \alpha_{xy} (k_x \sigma_y - k_y \sigma_x) + \alpha_{zz} k_z \sigma_z$
	$\Gamma_6 \oplus \Gamma_7$	$ 3/2, 3/2\rangle$	$\alpha_x k_z \tilde{\sigma}_x + \alpha_y k_z \tilde{\sigma}_y + \alpha_{zz} k_z \sigma_z$
D_3	Γ_4	$ 1/2, 1/2\rangle$	$\alpha_{xx} (k_x \sigma_x + k_y \sigma_y) + \alpha_{zz} k_z \sigma_z$
	$\Gamma_5 \oplus \Gamma_6$	$ 3/2, 3/2\rangle - i 3/2, -3/2\rangle$	$\alpha_x k_z \tilde{\sigma}_x + \alpha_y k_z \tilde{\sigma}_y + \alpha_{zz} k_z \sigma_z$
C_{3v}	Γ_4	$ 1/2, 1/2\rangle$	$\alpha_{xy} (k_x \sigma_y - k_x \sigma_y) + \beta k_y (3k_x^2 - k_y^2) \sigma_z$
	$\Gamma_5 \oplus \Gamma_6$	$ 3/2, 3/2\rangle - i 3/2, -3/2\rangle$	$\beta_x k_y (3k_x^2 - k_y^2) \tilde{\sigma}_x + \beta_y k_y (3k_x^2 - k_y^2) \tilde{\sigma}_y + \beta_z k_y (3k_x^2 - k_y^2) \sigma_z$
C_6	$\Gamma_7 \oplus \Gamma_8$	$ 1/2, 1/2\rangle$	$\alpha_{xx} (k_x \sigma_x + k_y \sigma_y) + \alpha_{xy} (k_x \sigma_y - k_y \sigma_x) + \alpha_{zz} k_z \sigma_z$
	$\Gamma_9 \oplus \Gamma_{10}$	$ 5/2, 5/2\rangle$	$\alpha_{xx} (k_x \sigma_x + k_y \sigma_y) + \alpha_{xy} (k_x \sigma_y - k_y \sigma_x) + \alpha_{zz} k_z \sigma_z$
	$\Gamma_{11} \oplus \Gamma_{12}$	$ 3/2, 3/2\rangle$	$\beta_1 k_y (3k_x^2 - k_y^2) \tilde{\sigma}_x + \beta_2 k_x (3k_y^2 - k_x^2) \tilde{\sigma}_x + \beta_3 k_y (3k_x^2 - k_y^2) \tilde{\sigma}_y + \beta_4 k_x (3k_y^2 - k_x^2) \tilde{\sigma}_y + \alpha_{zz} k_z \sigma_z$
C_{3h}	$\Gamma_7 \oplus \Gamma_8$	$ 1/2, 1/2\rangle$	$\beta_1 k_z [(k_x^2 - k_y^2) \sigma_x + 2k_x k_y \sigma_y] + \beta_2 k_z [-2k_x k_y \sigma_x + (k_x^2 - k_y^2) \sigma_y] + \beta_3 k_x (3k_y^2 - k_x^2) \sigma_z + \beta_4 k_y (3k_x^2 - k_y^2) \sigma_z$
	$\Gamma_9 \oplus \Gamma_{10}$	$ 5/2, 5/2\rangle$	$\beta_1 k_z [(k_x^2 - k_y^2) \sigma_x + 2k_x k_y \sigma_y] + \beta_2 k_z [-2k_x k_y \sigma_x + (k_x^2 - k_y^2) \sigma_y] + \beta_3 k_x (3k_y^2 - k_x^2) \sigma_z + \beta_4 k_y (3k_x^2 - k_y^2) \sigma_z$
	$\Gamma_{11} \oplus \Gamma_{12}$	$ 3/2, 3/2\rangle$	$\alpha_x k_z \tilde{\sigma}_x + \alpha_y k_z \tilde{\sigma}_y + \beta_1 k_x (3k_y^2 - k_x^2) \sigma_z + \beta_2 k_y (3k_x^2 - k_y^2) \sigma_z$
D_6	Γ_7	$ 1/2, 1/2\rangle$	$\alpha_{xx} (k_x \sigma_x + k_y \sigma_y) + \alpha_{zz} k_z \sigma_z$
	Γ_8	$y(y^2 - 3x^2) 1/2, 1/2\rangle$	$\alpha_{xx} (k_x \sigma_x + k_y \sigma_y) + \alpha_{zz} k_z \sigma_z$
	Γ_9	$ 3/2, 3/2\rangle$	$\beta_1 k_x (k_x^2 - 3k_y^2) \tilde{\sigma}_x + \beta_2 k_y (k_y^2 - 3k_x^2) \tilde{\sigma}_y + \alpha_{zz} k_z \sigma_z$
C_{6v}	Γ_7	$ 1/2, 1/2\rangle$	$\alpha_{xy} (\sigma_x k_y - \sigma_y k_x) + \beta k_z (3k_x^5 k_y - 10k_x^3 k_y^3 + 3k_x k_y^5) \sigma_z$
	Γ_8	$x(x^2 - 3y^2) 1/2, 1/2\rangle$	$\alpha_{xy} (\sigma_x k_y - \sigma_y k_x) + \beta k_z (3k_x^5 k_y - 10k_x^3 k_y^3 + 3k_x k_y^5) \sigma_z$
	Γ_9	$ 3/2, 3/2\rangle$	$\beta_1 k_y (k_y^2 - 3k_x^2) \tilde{\sigma}_x + \beta_2 k_x (k_x^2 - 3k_y^2) \tilde{\sigma}_y + \beta_3 k_z (3k_x^5 k_y - 10k_x^3 k_y^3 + 3k_x k_y^5) \sigma_z$
D_{3h}	Γ_7	$ 1/2, 1/2\rangle$	$\beta_1 k_z [(k_x^2 - k_y^2) \sigma_x - 2k_x k_y \sigma_y] + \beta_2 k_x (k_x^2 - 3k_y^2) \sigma_z$
	Γ_8	$zx(x^2 - 3y^2) 1/2, 1/2\rangle$	$\beta_1 k_z [(k_x^2 - k_y^2) \sigma_x - 2k_x k_y \sigma_y] + \beta_2 k_x (k_x^2 - 3k_y^2) \sigma_z$
	Γ_9	$ 3/2, 3/2\rangle$	$\alpha k_z \tilde{\sigma}_x + \beta_1 k_z (3k_x^5 k_y - 10k_x^3 k_y^3 + 3k_x k_y^5) \tilde{\sigma}_y + \beta_2 k_x (k_x^2 - 3k_y^2) \sigma_z$
T	Γ_5	$ 1/2, 1/2\rangle$	$\alpha_{xx} (k_x \sigma_x + k_y \sigma_y + k_z \sigma_z)$
O	Γ_6	$ 1/2, 1/2\rangle$	$\alpha_{xx} (k_x \sigma_x + k_y \sigma_y + k_z \sigma_z)$
	Γ_7	$xyz 1/2, 1/2\rangle$	$\alpha_{xx} (k_x \sigma_x + k_y \sigma_y + k_z \sigma_z)$
T_d	Γ_6	$ 1/2, 1/2\rangle$	$\beta [k_x (k_y^2 - k_z^2) \sigma_x + k_y (k_z^2 - k_x^2) \sigma_y + k_z (k_x^2 - k_y^2) \sigma_z]$
	Γ_7	$f(x) 1/2, 1/2\rangle$	$\beta [k_x (k_y^2 - k_z^2) \sigma_x + k_y (k_z^2 - k_x^2) \sigma_y + k_z (k_x^2 - k_y^2) \sigma_z]$

Inequalities

For O (cubic)/T(tetrahedral)

$$\vec{\gamma}(\vec{k}) = \gamma_0 \vec{k}$$

Also assume that

$$\mu \gg \omega_D \gg T_c$$

$$\gamma_0 k_F \gg \omega_D \gg \mu_B B$$

ASOC vs Gap

Compound	Structure	T_c (K)	γ (mJ/mol K ²)	H_{c2} (T)	1/ $T_1(T)$	KS	$C(T, H)$	TRSB	$\lambda(T)$	E_{ASOC} (meV)	$E_{ASOC}/k_B T_c$
CePt ₃ Si	<i>P</i> 4mm	0.75	390	2.7 <i>c</i> , 3.2 <i>a</i>	L	C	L	L	L	200 ⁹	3095
LaPt ₃ Si		0.6	11	Type I ^{10,11}	F		F1	N	F1	200	3868
CeRhSi ₃	<i>I</i> 4mm	1.05	110	~ 30 <i>c</i> , 7 <i>a</i>						10	111
CeIrSi ₃		1.6	100	~ 45 <i>c</i> , 9.5 <i>a</i>	L	C,R				4	29
CeCoGe ₃		0.64	32	> 20 <i>c</i> , 3.1 <i>a</i>						9 ^{12,13}	163
CeIrGe ₃		1.5	80	> 10 <i>c</i>							
UIr	<i>P</i> 2 ₁	0.13	49	0.026							
Li ₂ Pd ₃ B	<i>P</i> 4 ₃ 32	7	9	2	F	R	F	F2	30	50	
Li ₂ Pt ₃ B		2.7	7	5	L	C	F/L	L2	200	860	
Mo ₂ Al ₃ C		9	17.8	15	P			N	F1		
Y ₂ C ₃	<i>I</i> 43d	18	6.3	30	F2	R	F	L/F2	15	10	
La ₂ C ₃		13	10.6	19		C	F1	F2	30	33	
K ₂ Cr ₃ As ₃	<i>P</i> 6m2	6.1	70-75	23 , 37 \perp				L	60	114	
Rb ₂ Cr ₃ As ₃		4.8	55	20	P						
Cs ₂ Cr ₃ As ₃		2.2	39	6.5							
BiPd	<i>P</i> 2 ₁	3.8	4	0.8	F1		F1	F2	50	153	
Re ₆ Zr	<i>I</i> 43m	6.75	26	12.2				Y	F1		
Re ₃ W		7.8	15.9	12.5			F1	N	F1		
Nb _x Re _{1-x}		3.5-8.8	3-4.8	6-15	F	R	F1/2		F1		
Re ₂₄ Ti ₅		5.8	111.8	10.75			F1				
Mg _{10+x} Ir ₁₉ B _{16-y}	<i>I</i> 43m	2.5-5.7	52.6	0.8	F1	R	F1	F1/2			
Ba(Pt,Pd)Si ₃	<i>I</i> 4mm	2.3-2.8	4.9-5.7	0.05-0.10			F1				
La(Rh,Pt Pd,Ir)Si ₃		0.7-2.7	4.4-6	Type I/0.053			F1	N	F1	17(Rh)	93(Rh)
Ca(Pt,Ir)Si ₃		2.3-3.6	4.0-5.8	0.15-0.27			F1	N			
Sr(Ni,Pd,Pt)Si ₃		1.0-3.0	3.9-5.3	0.039-0.174			F1				
Sr(Pd,Pt)Ge ₃		1.0-1.5	4.0-5.0	0.03-0.05			F1				

Table of some known NCS materials.

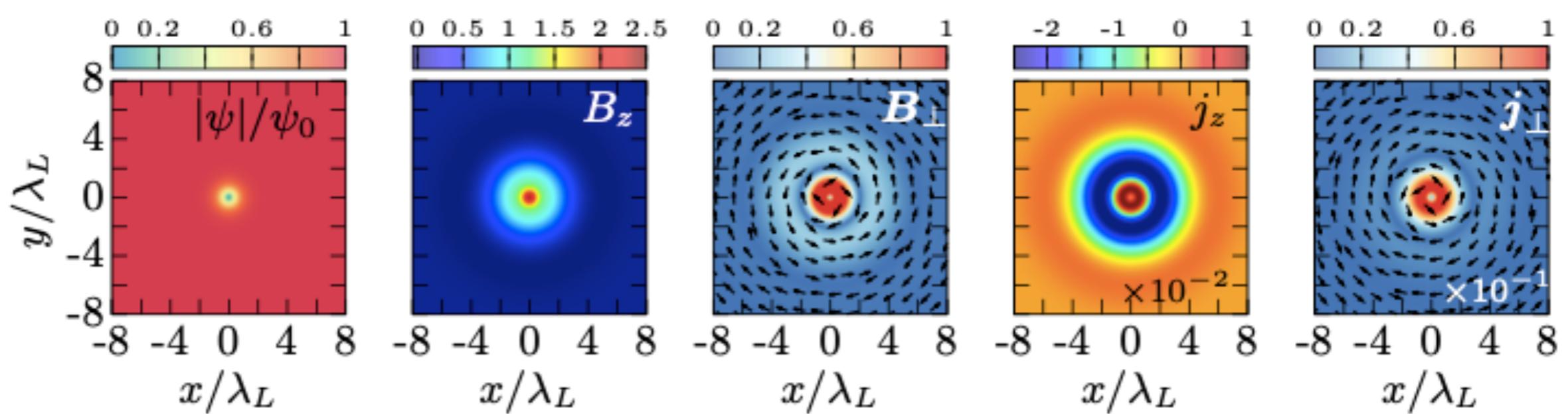
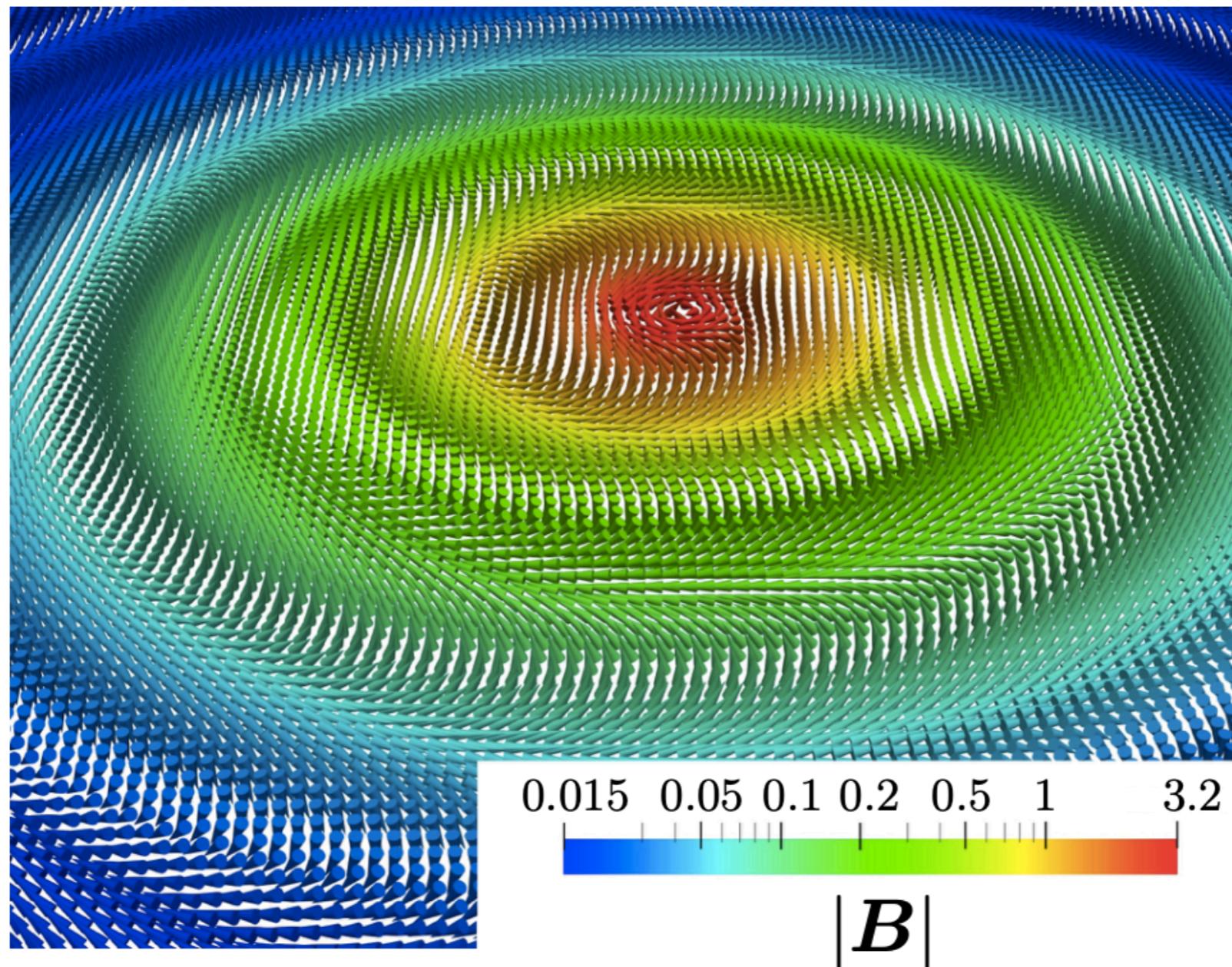
Source: arXiv:
1609.05953

Scalings

$$\vec{x} = \frac{1}{\sqrt{-\alpha}} \left(\frac{\beta}{2e^2} \right)^{\frac{1}{4}} \vec{r}, \quad \Delta = \sqrt{\frac{-\alpha}{2\beta}} \psi$$

$$F = \frac{\sqrt{-\alpha}}{2(2e^2)^{\frac{3}{4}} \beta^{\frac{1}{4}}} F', \quad \vec{A} = \frac{1}{2e} \frac{r}{x} \vec{A}'$$

$$\mathcal{L} = -\eta + \nabla \times \quad \text{with} \quad \eta \equiv \eta_1 + i\eta_2 = \frac{-\gamma + i\chi}{\gamma^2 + \chi^2}.$$



- ▶ SOC, coupling \vec{j} with \vec{B} , allows for additional longitudinal current in parallel to \vec{B} .
- ▶ Interesting properties: spiral meissner effect, spiralling vortex structure, and inter-vortex bound states spawn on account of SOC.
- ▶ It is then reasonable to ask : What other properties does SOC affect?
- ▶ Recent experiment.... (In the fluctuation....reg)

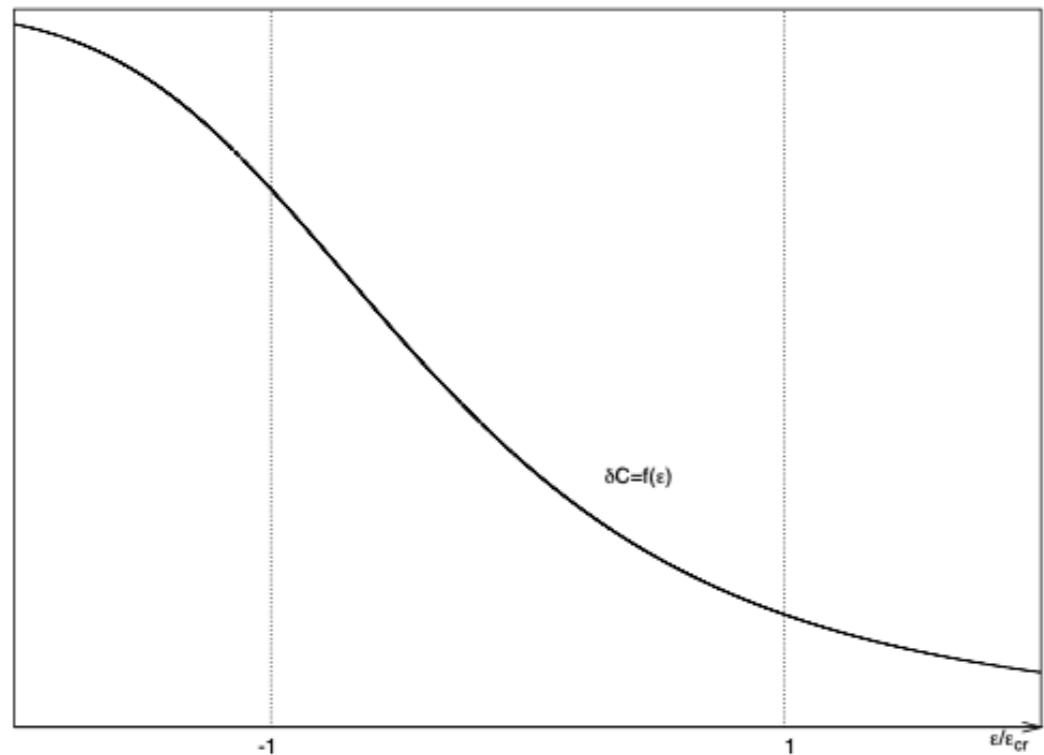


Fig. 1. Temperature dependence of the heat capacity of superconducting grains in the region of the critical temperature

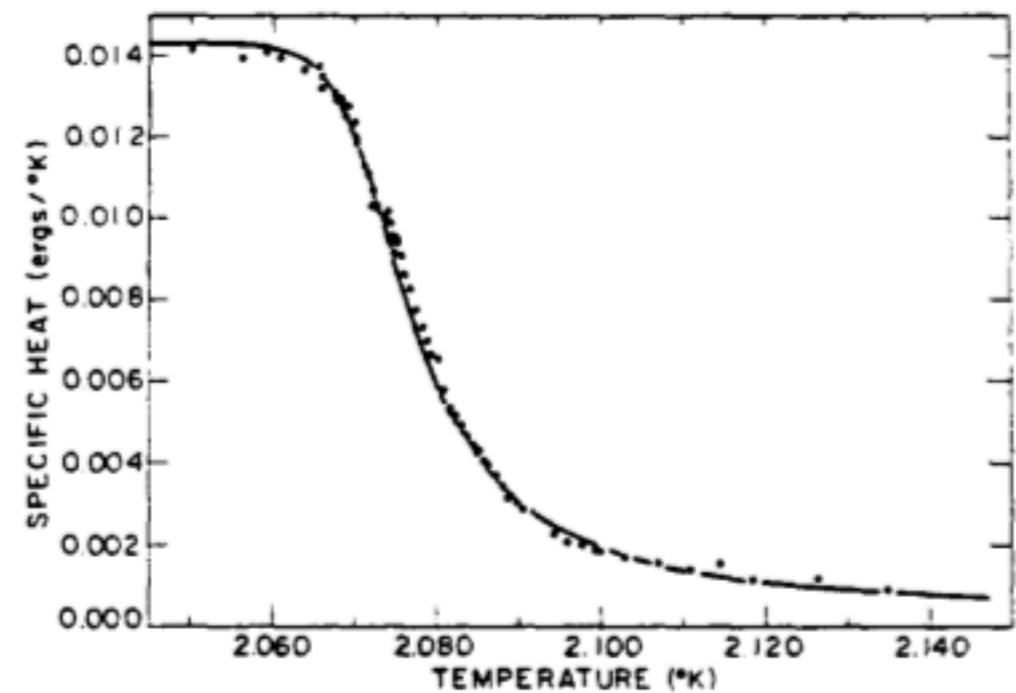
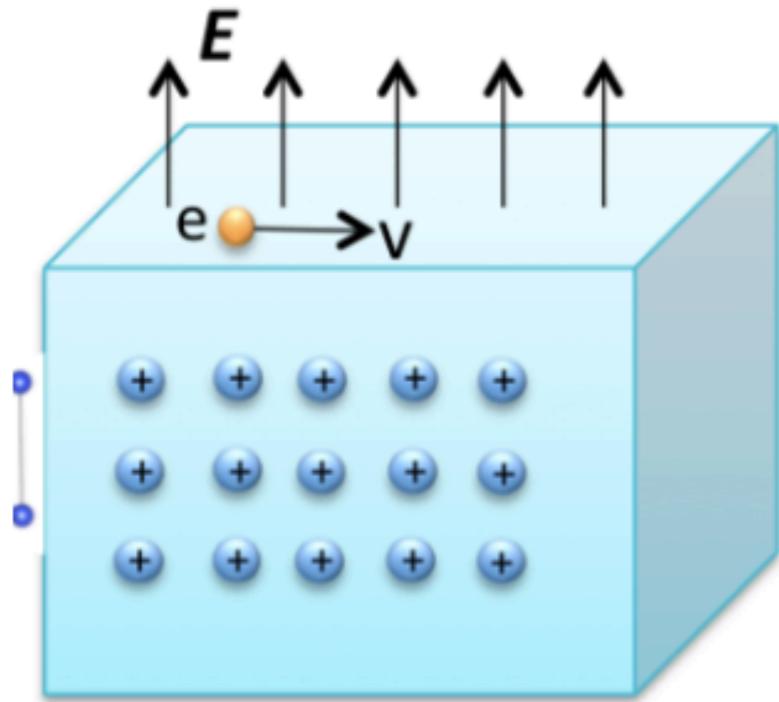


FIG. 1. Comparison of theory with experiment. The dots are the experimental values of the specific heat of a 1350 Å sample of $\text{BiSb}_{0.60}$ plotted against temperature. The solid curve is the theoretical curve of specific heat versus temperature determined by the equation

$$f(C/0.0143) = (0.0143/C - 1) + \ln(0.0143/C - 1) = 322.6 T - 669.3.$$



$$\hat{H}_R = \frac{k^2}{2m} + \alpha \hat{\mathbf{n}} \cdot (\vec{\sigma} \times \mathbf{k}) = \frac{k^2}{2m} + \alpha (\sigma^x k_y - \sigma^y k_x)$$

$t \rightarrow -t : \mathbf{k} \rightarrow -\mathbf{k}, \sigma \rightarrow -\sigma$

$$H_R = \begin{pmatrix} k^2 / 2m & \alpha(k_y + ik_x) \\ \alpha(k_y - ik_x) & k^2 / 2m \end{pmatrix} \Rightarrow \varepsilon_{\pm} = \frac{k^2}{2m} \pm \alpha k$$

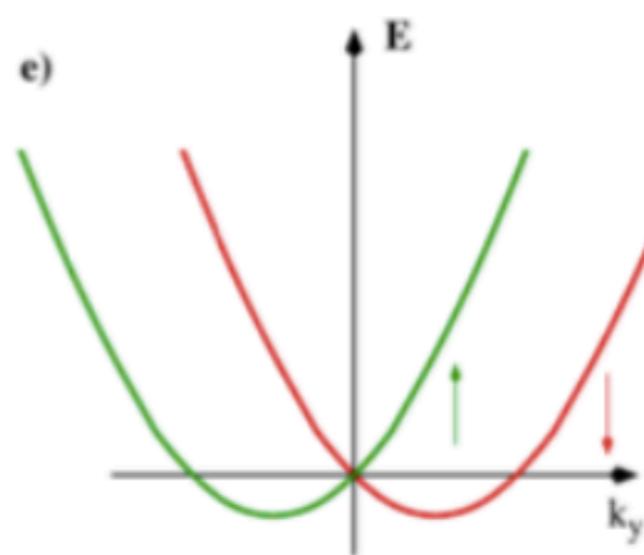
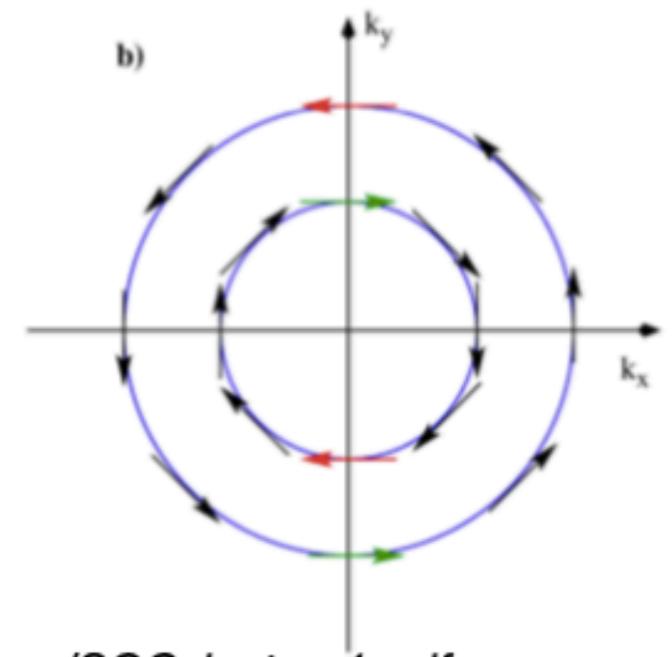
TR - Yes, IR - **Antisymmetric**

$$H_E = -E_0 z,$$

$$\mathbf{B} = \frac{1}{c^2} \mathbf{E} \times \mathbf{v}.$$

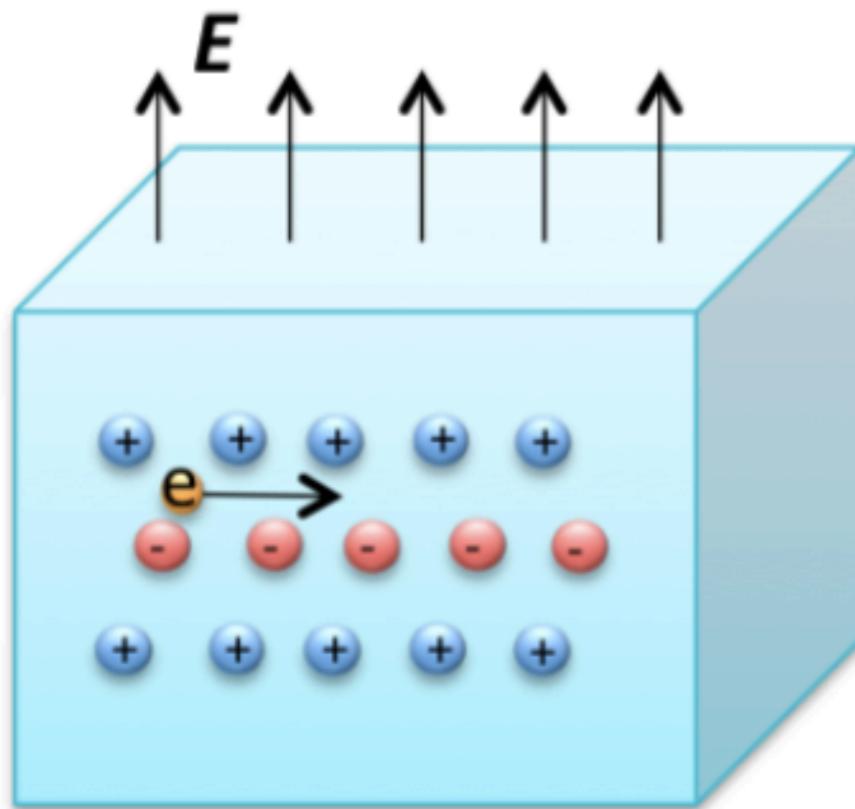
$$H_{SO} = \frac{g\mu_B}{2c^2} (\mathbf{v} \times \mathbf{E}) \cdot \boldsymbol{\sigma},$$

$$H_R = \alpha(\boldsymbol{\sigma} \times \mathbf{p}) \cdot \hat{z},$$



Source: https://tms16.sciencesconf.org/data/pages/SOC_lecture1.pdf

$$\hat{H} = \underbrace{\frac{\hat{p}^2}{2m} + eV}_{\text{non-relativistic}} + \underbrace{\frac{\hat{p}^4}{8m^2c^2}}_{\text{K.E. correction}} + \underbrace{\frac{\hbar^2}{8m^2c^2} \nabla^2 V}_{\text{Darwin term}} + \underbrace{\frac{\hbar}{4m^2c^2} \vec{\sigma} \cdot (\vec{\nabla} V \times \hat{\mathbf{p}})}_{\text{SOI}}$$



Source: https://tms16.sciencesconf.org/data/pages/SOC_lecture1.pdf

- Bulk asymmetry can also induce a SOC term.
- Exact nature depends strongly on the symmetry of the crystal.

Examples:

Cubic: $H_{ASOC} : \alpha_{xx}(k_x\sigma_x + k_y\sigma_y + k_z\sigma_z)$

D_3 : $H_{ASOC} : \alpha_{xx}(k_x\sigma_x + k_y\sigma_y) + \alpha_{zz}k_z\sigma_z$

Source: arXiv:1609.05953

$$\frac{B^2\gamma^2}{\delta}+\frac{\delta Be}{\pi}\ll a$$

$$a=\alpha \qquad \delta=\xi\cdot \alpha^2$$

$$\begin{aligned}\kappa_c &= \sqrt{\frac{\beta}{2e^2}} \frac{1}{\sum_{a=\pm 1} K_a v_{aF}^2}, \quad \vec{H} = \frac{\sqrt{2\beta}}{-\alpha} \vec{\mathcal{H}}, \\ \gamma &= \sqrt{-\alpha} \left(\sum_{a=\pm 1} a K_a v_{aF} \right) 2 \mu_B \kappa_c \left(\frac{2e^2}{\beta} \right)^{\frac{3}{4}}, \\ v &= \sqrt{-\alpha K_+ K_-} \left(\sum_{a=\pm 1} v_{aF} \right) 2 \mu_B \kappa_c \left(\frac{2e^2}{\beta} \right)^{\frac{3}{4}}.\end{aligned}$$

$$\begin{aligned}\vec{x} &= \frac{1}{\sqrt{-\alpha}} \left(\frac{\beta}{2e^2} \right)^{\frac{1}{4}} \vec{r}, \quad \Delta = \sqrt{\frac{-\alpha}{2\beta}} \psi, \quad F = \frac{\sqrt{-\alpha}}{2(2e^2)^{\frac{3}{4}} \beta^{\frac{1}{4}}} F', \\ \vec{A} &= \frac{1}{2e} \frac{r}{x} \vec{A}'.\end{aligned}\tag{28}$$

Thank you for your patience!