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The main idea of this exposition is highlight the study of lattice models (for e.g. ising model) by using
expansions around exactly solvable limits of the same. This helps us arrive at dualities between different
lattice models, ultimately culminating in a non-local order parameter harbouring phase transition. I’ve
followed Kardar’s reference on stat field theory in making these.

1 Low Temperature Expansion

We work with a d-dimensional ferromagnetic ising model (d > 2)

− βH = K
∑
<ij>

σiσj , K = βJ > 0 (1)

Now look at the low temperature limit. In this case all the spins have aligned (WLOG we can take
σi = +1) and excitations around the same correspond to overturning an up spin to down. Now the
lowest energy excitation would be turning one spin down, costing an energy of 2K*2d with N ways of
doing it. The next higher excitation would be to turn 2 spins. To keep the cost minimum, we turn a
dimer instead of two well-separated disjoint spins. We can use this idea to keep iterating the procedure
and compute the partition function as

Z = 2edNK
[
1 +Ne−4dK + dNe−4(2d−1)K +

N(N − 2d− 1)

2
e−8dK + ...

]
(2)

The factor of 2 is due to two-fold degeneracy while the 4th order term captures the disjoint spin flips.
As this is at low temperature, β →∞, hence we need to keep only terms of the kind e−cK . This can be
done by looking at the free energy per site

−βf =
lnZ

N
= dk +

1

N
ln
[
1 +Ne−4dK + dNe−4(2d−1)K +

N(N − 2d− 1)

2
e−8dK + ...

]
(3)

= dK + e−4dK + de−4(2d−1)K − 2d+ 1

2
e−8dK + .... (4)

Note that there’s a cancellation of terms of order N2. This can be explicitly checked, however a quicker
way to see is that f being intensive, this cancellation was guaranteed. This then settles the cancellation
to be true for higher orders as well.

2 High temperature Expansion

While low temp expansion doesn’t work for continuous systems (for e.g. XY model) due to presence of
Goldstone modes, high temperature expansion is compatible with both. To effect this expansion, the
high T state is rightly chosen to be that of independent spins. Expansion in β is done around this state
giving us

Z = tr(e−βH) = tr

[
1− βH+

β2H2

2
+ ....

]
(5)

−βf =
lnZ

N
=

lnZ0

N
− β 〈H〉0

N
+
β2

2

〈H2〉0 − 〈H〉20
N

+ ... (6)
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where 〈〉0 is the average taken over independent spins. For the ising model, however, there’s a more
powerful graphical approach yielded if we take t = tanhK (which → 0 at high T) as our expansion
parameter. Since (σiσj)

2 = 1, this yields

eKσiσj = coshK + sinhK · σiσj = cosh K (1 + tσiσj) (7)

Now the partition function becomes

Z =
∑
{σi}

e
K

∑
〈i,j〉

σiσj

= (coshK) #ofbonds
∑
{σi}

∏
〈i,j〉

(1 + tσiσj) (8)

For x no. of lattice bonds, the total no. of pairs generated are 2x. Now comes the crucial observation:
Since t is small, we can essentially expand the above product in a polynomial of t. What would a given
power of t mean then? The answer is easy if we think as follows: every power of t comes with a σmσn
factor - Denote this graphically by joining a line from m to n site and putting a factor of t for that. This
is shown in Fig.1.

Figure 1: Labelling lattice
bonds

For a term containing tm, we can see that it’ll have m lattice bonds in
it. The

∑
{σi}

will only give non-zero values for terms that have σ2
l , hence we

require that for each such tm term, the corresponding σj appearing must
have even powers. This would mean that every lattice site contributing
to the tm term should be evenly linked. This restricts the terms greatly,
namely:

• m = even (employ distance argument to convince)

• Graphs have to be closed i.e. can’t have open ends (since the sum
vanishes for that end)

Hence only surviving graphs have even no. of lines passing through each
site. Hence the partition function could be rewritten as

Z = 2N · (cosh(K))Nb

∑
closed graphs

tnumber of lattice bonds in each graph (9)

Note: Having no lattice bond also constitutes a graph i.e. ∃ a 1 contibuting
to the sum above. Also the 2N in the sum results from summing over all sites, whether or not they
appear as σ. The closed graphs can be easily enumerated by drawing them on a lattice as shown in
Fig.2.

Figure 2: Closed graphs enumeration

In d-dimensions, we can write

Z = 2N (coshK)N

[
1 +

d(d− 1)N

2
t4 + d(d− 1)(2d− 3)t6 + ...

]
(10)

where the 2nd term corresponds to choosing a square in d-dimensions, no. of ways of which are d(d−1)
2 .

3 Self-Duality of 2D ising model

The above expansions can lead to a duality between high-low temp expansions of the 2D ising model,
called the Kramers-Wannier’s duality. This can be easily sen by comparing the partition function
expansions:
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1. Low temperature:

Z = e2NK

[
1 +Ne−4∗2K + 2Ne−6∗2k + ....

]
(11)

= e2NK
∑

Islands of (−) droplets

e−2K· perimeter of island (12)

2. High Temperature:

Z = 2N (coshK)2N
∑

graph with 2 or 4 lines per site

(tanhK)length of graph (13)

The crucial observation is this: in 2D square lattice, the boundary of islands of ↓ spin droplets can
only have sites with 2/4 links emanating from them - hence they make an acceptable closed graph.This
ensures that there’s a duality in the expansions given by the above, with duality relation

e−2K̃ = tanh K (14)

With the hindsight of a phase transition, we can compute the critical coupling (i.e. βcJ): From the low
T- high T duality, we know that F has a singular part which can be expressed as a function g(x), where

x is e−2K̃ for low T and tanh K for high T. Therefore, a singularity in F at some K̃ is reflected in
the same being at some high temp K. But we know that there’s only one singularity: at critical point.
Hence the critical coupling must map to itself , which leads to

e−2Kc = tanh Kc (15)

which gives Kc = − 1
2 ln(
√

2− 1). Note the strength of this result over MFT approach.

4 3D ising model and Lattice gauge theory

The low temperature expansion leads to

Z = e−3NK
[
1 +Ne−2K×6 + 3Ne−2K×10 + ....

]
(16)

Z = e3NK
∑

islands of (−) spins

e−2K×area of island
′s boundary (17)

while the high temperature expansion yields

Z = 2NcoshK3N
∑

with 2,4,6 lines per site

(tanh K)number of lines (18)

Diagrammatically, it looks like fig.(3). We see that the high temperature has two problems: It incor-
porates all the closed graphs from 2d ising (which don’t enclose any − spin islands in 3D) and that it
allows for these ”square-like” patches to join up and produce open chain (see the last fig in fig.(3, high
T series). Hence there’s no self-duality for 3D ising model. Can it be dual to another model?

Figure 3: 3D ising expansions

As it happens, this is can be done. The corresponding
dual (for a reasoning on how to arrive at it intutively, see
kardar’s relevant sections) is given by

−βH3D dual = K
∑

plaquettes

σ̃iP σ̃
j
P σ̃

k
P σ̃

l
P (19)

where a plaquette is a square on the SC lattice. This is
an example of a Z2 lattice gauge theory. The name arrives
because, in addition to Z2 symmetry of the lattice, we have
a local/gauge symmetry as follows: Pick a site and revert all
signs of all ising spins that emanate from it (6 in this case).
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Now since this changes the sign of 2 spins in each adjoint
plaquette, H remains invariant.
Now Elitzur’s theorem states that spontaneous breaking of local symmetries isn’t possible. What
the means is that proceeding similar to the ising case, if we define a local order parameter (say m,
magnetization for this case),it cannot characterise spontaneous symmetry breaking type phase transition.
What can be shown is that (see Muramatsu’s notes) as we switch on the symmetry breaking field h, we
see that 〈σ̃(m, êi)〉 (for mth site and ith direction link) will be a continuous function of h and vanishes
as h → 0. The physical reason why this happens is that due to local transformations, the system only
has finite change in energy in presence of h, hence no singularities arise as we take h→ 0.

5 Phase transitions via a Non-Local order parameter

While the usual 3D ising model shows a phase transition (see Peierl’s arguments), for it’s dual to show
the same, it can’t proceed via a local order parameter. Hence, Wegner suggested that the same happens
via a non-local order parameter. For this case, a differing asymptotic behaviour of correlation function
differentiates the two phases from each other.
Since only gauge invariant quantities will have non-zero values, one consrtucts a correlation function
called Wilson loop defined as

Cs = 〈Product of σ̃ around the loop〉 = 〈
∏
iεS

σ̃i〉 (20)

One can check that this is gauge invariant, since gauge transformation changes two bonds in S, product of
which remains invariant. We can now look at the behaviour of wilson loop at high and low temperatures.
For high temperatures, partition function shall is a sum of all graphs constructed from plaquettes with
S as their boundary (they’re really sheets on lattice, with a lattice area of As and perimeter Ps). Each
plaquette contributes a tanh K, so the contribution can be written

Cs =
1

Z

∑
{σ̃}

∏
iεS

σ̃ie
K

∑
σ̃i
P σ̃

j
P σ̃

k
P σ̃

l
P (21)

= (tanhK)As
[
1 +O

(
tanh K2

)
+ ...

]
(22)

= exp(−f(tanh K)×As) (23)

Note that As is the minimal area enclosed by the graph while the squared term comes from taking the
sheet with minimal area and adding just one more adjoining plaquette, thus making 3 plaquettes, but 1
gets absorbed in the prefactor before the sum, hence we get squared terms.
The low temperature expansions starts (not with an ordered state) with lowest energy configuration.However,
∃ NG = 2N such states, related to each other by gauge transformation. Since Cs is gauge independent,
it is sufficient to look at one of the ground states, namely with all σ̃i = +1 (Caution: this is A lowest
energy state, isn’t necessarily the true thermal state). The minimum energy excitations correspond to
flipping a link/bond. This will cost 8K worth of energy with 3N ways of effecting it. Also, Ps, defined
previously, denotes the of bonds present on the perimter of S. We can then write

Cs =
NG
NG

e3nK̃P
[
1 + (3N − Ps)e−2K̃·4 + (−1)Pse

−2K̃×4......
]

e3nK̃P
[
1 + 3Ne−2K̃·4 + ......

] (24)

where NG comes from the gauge invariance induced degeneracy. The first term in the numerator corre-
sponds to not flipping any link on S, while the 2nd term denotes Ps ways of flipping a link on S. This
can be written more succintly as

Cs = 1− 2Pse
−8K̃ (25)

= exp
[
− 2e−8K̃Ps

]
(26)

Thus the asymptotic dependence of Cs is different at high and low temperatures: at high T, it’s decay
is controlled by Area while at low T it’s decay is controlled by Perimeter. The phase transition marks
the change from one type to another, and by duality, has same singularities as Ising model.
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